A l'enseigne du Cheval Ailé. 1946. In-8. Broché. Etat d'usage, 1er plat abîmé, Dos satisfaisant, Non coupé. 291 pages - une illustration en noir et rouge en frontispice. Plats contrepliés en trois rabats; 1er plat légèrement déchiré.. . . . Classification Dewey : 94.4-Editions numérotées
Exemplaire S.P. n°94/ 250 sur vergé impondérable, destinés à la presse. Avec une intro. de Louis Rougier et un portrait au pinceau de Paul Monnier. Classification Dewey : 94.4-Editions numérotées
L'enseigne du cheval ailé 1946 in8. 1946. Broché.
très bon état sous papier de soie intérieur frais bord un peu frottés exemplaire n°1551
Plon 1927 in8. 1927. Relié. illustrations en noir et blanc
Etat Correct ancien livre de bibliothèque couverture défraîchie intérieur tachée de rousseurs
P., L'Illustration, Octobre 1934, in-folio, 40 pp, nombreuses illustrations et photos en noir et blanc et en couleurs, un portrait en couleurs hors texte
Paris, Dunod, 1873, in-8, 43, (1) pages et (2) cartes depl, broché, couverture imprimée de l'éditeur, Rare tiré à part non coupé. A travers cette brochure, Poincaré traite des trois modes de représentation (isoombres, suivies et horaires) des phénomènes météorologiques, modes employés avec beaucoup de réticence à l'époque. Il explique notamment les légendes des deux cartes qu'il a réalisées pour représenter les pluies tombées sur la Meuse et le bassin de la Seine durant l'hiver 1868-1869. En 1871, Poincaré présente à la Commission de l'Association Scientifique de France une étude en 7 parties intitulée "études sur la distribution et la marche des pluies dans la région". Un résumé sera publié peu après dans le n° 211 de la revue hebdomadaire de l'institution. Antoine Poincaré, polytechnicien et ingénieur en chef à Bar-le-Duc fut l'oncle du mathématicien et physicien Henri Poincaré et le père de Raymond Poincaré, président de la France de 1913 à 1920. Malgré la présence minime de rousseurs et de taches sur les couvertures, bel exemplaire. Couverture rigide
Bon 43, (1) pages et (2) cartes
Paris : G. Masson, éditeur, M DCCCLXXXIV, (1884), gr. in-8vo, 2 ff. + 500 p., cachet de la Société de Lecture de Genève, reliure en demi-cuir d’épque. (Rel. C. Perrenoud Genève),
Phone number : 41 (0)26 3223808
Flammarion, collection Bibliothèque de Philosophie scientifique, sans date. In-8 broché, covuerture décorée, légèrement défraîchie, dos frotté.
Ernest Flammarion. 1911. In-12. Relié toilé. Etat d'usage, Couv. légèrement passée, Dos satisfaisant, Papier jauni. 278 pages. Ex libris collé sur le 1er contreplat. Plats tachés. Pièce de titre en cuir sur le dos, titre, auteur et filets dorés.. . . . Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES
Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES
BROCHE BON ETAT . ANNOTATIONS STYLO NOIR PAGE DE GARDE . NOM+PRENOM+TAMPON PAGE DE FAUX TITRE .TEXTE TRES PROPRE .
Merci de nous contacter à l'avance si vous souhaitez consulter une référence dans notre boutique à Authon-du-Perche.
Paris, Librairie Scientifique A. Hermann et Fils, 1911, in-8, XXV-294 pp, Broché, couverture muette, Édition originale des cours professés par Poincaré et rédigés par Henri Vergne. Ils sont illustrés de figures en noir dans le texte. Couverture défraîchie, quelques minuscules déchirures, quelques taches. Complet du feuillet d'errata, sans le portrait. Étiquette et tampons de l'Institut catholique de Paris. Couverture rigide
Bon XXV-294 pp.
[Berlin, Stockholm, Paris, Beijer, 1910] 4to. Without wrappers as extracted from ""Acta Mathematica. Hrdg. von G. Mittag-Leffler."", Bd. 33, pp. 57-86.
First printing of Poincaé's work on Fredholm's equation.""... heuristic variational arguments convinced Poincaré that there should be a sequence of ""eigenvalues"" and corresponding ""eigenfunctions"" for this problem, but for the same reasons lit was not able to prove their existence. A few years later, Fredholm's theory of integral equations enabled him to solve all these problems"" it is likely that Poincareé's papers had a decisive influence on the development of Fredholm's method, in particular the idea of introducing a variable complex parameter in the integral equation. It should also be mentioned that Fredholm's determinants were directly inspired by the theory of ""infinite determinants"" of H. von Koch, which itself was a development of much earlier results of Poincaré in connection with the solution of linear differential equations."" (DSB)
Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1909. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 33, 1909. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 195-200.[Entire volume: (6), 392, 12 pp].
First printing of Poincaé's work on Fredholm's equation.""... heuristic variational arguments convinced Poincaré that there should be a sequence of ""eigenvalues"" and corresponding ""eigenfunctions"" for this problem, but for the same reasons lit was not able to prove their existence. A few years later, Fredholm's theory of integral equations enabled him to solve all these problems"" it is likely that Poincareé's papers had a decisive influence on the development of Fredholm's method, in particular the idea of introducing a variable complex parameter in the integral equation. It should also be mentioned that Fredholm's determinants were directly inspired by the theory of ""infinite determinants"" of H. von Koch, which itself was a development of much earlier results of Poincaré in connection with the solution of linear differential equations."" (DSB)
Berlin, G. Reimer, 1887. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 10, 1887. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. Pp. 310-12. [Entire volume: (4), 397 pp].
First printing of Poincaré's reply to Thomé's critique of an earlier paper by Poincaré. In his reply Poincaré ""seems to have created a theory of asymptotic expansions where previously there had only been ad hoc techniques, and to have opened the door for the return into rigorous mathematics of divergent series."" (Bottazzini, Hidden Harmony).
Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1909. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 32, 1909. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 195-200.[Entire volume: (6), 392, 12 pp].
First appearance of Poincaré's paper on Schoenfliess and Zermolo's paper published in the same volume (vol. 32).
Ernest Flammarion. 1916. In-12. Broché. Etat d'usage, Couv. légèrement passée, Dos abîmé, Papier jauni. 311 pages.. . . . Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES
Collection bibliothèque de philosophie scientifique. Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES
Berlin, G. Reimer, 1905, 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 29, 1905. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. Pp. 235-72. [Entire volume: (4), 433 pp].
First printing of Poincaré's final and most extensive paper on Gyldén's horistic methods.
[Berlin, Stockholm, Paris, F. & G. Beijer, 1897]. 4to. Without wrappers as extracted from ""Acta Mathematica. Hrdg. von G. Mittag-Leffler."", Bd. 21. No backstrip. Fine and clean. Pp. 331-341.
First printing of Poincaré's principal address at the first International Congress of Mathematicians held in Zürich in 1897.
Berlin, Stockholm, Paris, Almqvist & Wiksell, 1908. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 31, 1908. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. Pp. 1-64. [Entire volume: (8), 408, (2), 12 pp].
First appearance of Poincaré's important paper in which he presented the first solution to the problem of the uniformization of curves - now know as The Uniformization Theorem. Clebsch and Riemann tried to solve the problem of the uniformization for curves. ""In 1882 Klein gave a general uniformization theorem, but the proof was not complete. In 1883 Poincaré announced his general uniformization theorem but he too had no complete proof. Both Klein and Poincaré continued to work hard to prove this theorem but no decisive result was obtained for twent-five years. In 1907 Poincare (in the offered paper) and Paul Koebe independently gave a proof of this uniformization theorem...With the theorem on uniformization now rigorously established an improved treatment of algebraic functions and their integrals has become possible."" (Morris Kline).
(Stockholm, Beijer), 1885. 4to. As extracted from ""Acta Mathematica, 21. Band]. No backstrip. Fine and clean. Pp. 259-380.
First printing of Poincaré's famous paper in which he proved that a rotating fluid such as a star changed its shape from a sphere to an ellipsoid to a pear-shape before breaking into two unequal portions. ""This work, which contained the discovery of new, pear-shaped figures of equilibrium, aroused considerable attention because of its important implications for cosmogony in relation to the evolution of binary stars and other celestial bodies."" (The Princeton Companion to Mathematics, P. 786)Another famous paper of Poincaré in celestial mechanics is the one he wrote in 1885 on the shape of a rotating fluid mass submitted only to the forces of gravitation. Maclaurin had found as possible shapes some ellipsoids of revolution to which Jacobi had added other types of ellipsoids with unequal axes, and P. G. Tait and W. Thomson some annular shapes. By a penetrating analysis of the problem, Poincaré showed that still other ""pyriform"" shapes existed. One of the features of his interesting argument is that, apparently for the first time, he was confronted with the problem of minimizing a quadratic form in ""infinitely"" many variables."" (DSB)
Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1897. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 21, 1897. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 83-97"" Pp. 331-341.[Entire volume: (6), 376 pp + 4 plates].
First printing of this paper in which Poincaré arrives at a new theorem about canonical transformation, and in his later ""Methodes Nouvelles"", he proved this theorem using a variiational principle of mechanics, known today as the Hamilton principle.Also included is the first printing of Poincaré's principal address at the first International Congress of Mathematicians held in Zürich in 1897.
Stockholm, Beijer, 1885. 4to. As extracted from ""Acta Mathematica, 21. Band]. No backstrip. Fine and clean. Pp. 83-97.
First printing of Poincaré's paper in which he developed the idea published by Fuchs in 1884. Fuchs established that the equation with fixed branch points can be made into a Riccati equation if its genus - the genus of the corresponding Riemann surface - with respect to u and du/dz is zero and can be integrated using elliptic functions if the genus is 1.
Berlin, G. Reimer, 1912. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 35, 1912. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. Pp. 1-28. [Entire volume: (4), 398, (1), 27, 19 pp].
First appearance of Poincaré's report on 1910 Bolyai Prize which was awarded to David Hilbert in recognition of his work in fields of invariant theory, transcendent number (e constant after Lindemann), arithmetic, the (Hilbert-)Waring theorem, geometry, integral equations and the Dirichlet’s principle.In 1910, Hilbert became only the second winner of the Bolyai Prize of the Hungarian Academy of Sciences. It was the recognition of the fact that Hilbert was one of the leading mathematicians of his time. The first winner of the prize in 1905 was Henri Poincare, the most prolific mathematician of the 19th century.Poincaré about the works and achievements of David Hilbert in fields of invariant theory, transcendent number (e constant after Lindemann), arithmetic, the (Hilbert-)Waring theorem, geometry, integral equations and the Dirichlet’s principle.
Paris, Gauthier-Villars, (1895). Royal8vo. Orig. printed wrappers. Upper part of backstrip nearly gone. A small tear to frontwrapper, no loss. (4),189,(1) pp. Textfigures.
First edition. (Cours de Physique Mathematique).
Paris, Georges Carré, 1890 in-8, XIX pp., 314 pp., avec 39 figures dans le texte, demi-basane bordeaux, dos lisse de guirlandes et filets dorés, tranches mouchetées (reliure de l'époque).
Édition originale. Ce fut une constante des travaux de Poincaré (1854-1912) que de rechercher l'application de ses connaissances mathématiques au domaine de la physique, ici dans les cas des équations de Maxwell à l'électrodynamique et au magnétisme. - - VENTE PAR CORRESPONDANCE UNIQUEMENT
Flammarion. 1963. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 220 pages.. . . . Classification Dewey : 100-PHILOSOPHIE ET DISCIPLINES CONNEXES
Classification Dewey : 100-PHILOSOPHIE ET DISCIPLINES CONNEXES