P., Alcan, 1891/1894; 2 vol. de texte et 1 atlas reliés en 2 volumes in 8 reliés en pleine basane bleue marine, dos ornés de filets dorés (reliures de l'époque), (dos légèrement frottés, cachets de bibliothèque), T.1 : (2), 182pp., T.2 : (2), 152pp., Atlas : (2), 18 planches dépliantes, (2), 18 planches dépliantes, SOIT 36 PLANCHES DEPLIANTES
---- J. Caron, ancien élève de l'Ecole Normale Supérieure, agrégé des sciences mathématiques, fut directeur des travaux graphiques à l'Ecole Normale Supérieure et professeur de géométrie descriptive au lycée Saint-Louis**1060/P5DE
Paris, Girard, Barrère et Thomas, 1948. 16 x 24, 757 pp., 355 figures, broché, bon état (cachets privés).
"cours professé à l'Ecole Nationale du Génie Rural; 3e édition, revue et complétée."
P., Hermann, 1933, un volume in 8 broché, couverture imprimée, 44pp.
---- EDITION ORIGNALE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**6958/o5ar+cav/f4
P., Hermann, 1971, un volume in 8, broché, couverture imprimée, 94pp., (1)
---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1068/6946/o5ar
P., Gauthier-Villars, 1937, un volume in 8,broché, couverture imprimée, 6pp., 269pp.
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1061/6957/o5ar+cav.e4/f4
P., Hermann, 1934; . P., Hermann, 1934; in 8, 42pp., broché, couverture imprimée
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96) **6949/o5ar+cav/f4(2)
P., Gauthier-Villars, 1914, un volume in 4, broché, couverture imprimée, pp. 149/186
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFRINT) du Journal de mathématiques pures et appliquées ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1079/6936/o5ar
P., Gauthier-Villars, 1914, un volume in 4, broché, couverture imprimée, (deuxième plat de couverture légèrement défraîchie), pp. 263/355
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFRPINT) des annales scientifiques de l'Ecole normale supérieure, tome 31 ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1076/6939/o5ar
P., Gauthier-Villars, 1937, un volume in 8, broché, couverture imprimée, 6pp., 308pp.
---- EDITION ORIGINALE ---- "Cartan's mathematical work can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**6952/cav.f4
P., Société mathématique de France, 1914, un volume in 8, broché, 36pp.
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFPRINT) du Bulletin de la Société mathématique de France ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1066/6950/o5ar+cav/e4
Paris Gauthier Villars 1931 In4 114 Pages - Au sommaire : Les fonctions de deux variables complexes et le problème de la représentation analytique - très bon état
Très bon
Paris Gauthiers Villars 1923 In8 Pagination continue - ( environ 40 pages ) - broché - Bon etat - Au Sommaire :Un Théorème Sur Équations Algébriques Entières par Casabonne - Remarques au sujet d'un des Problèmes De Mécanique donnés Au Concours De L'agrégation 1921 par Thiry -Sur 2 Familles De Courbes Orthogonales par Fontené -Intro L'étude De Mécanique et Ses Principes (suite et fin )par Bouligand
Bon
Paris, Librairie classique de Ch. Fouraut et fils, 1873. 1 volume in-8 relié demi chagrin rouge Dos à nerfs orné de fleurons, du titre et du nom de l'auteur doré. viii - 272 pp. Ouvrage illustré de 260 figures géométriques gravées sur cuivre et pour servir d'application 60 eaux-fortes dessinées par l'auteur., reliure avec titre auteur et proprietaire doré a l'or sur le dos
Ray I6*
P., Université de Paris, 1957, brochure agrafée de 36 pages.
Conférence faite au Palais de la Découverte le 1er juin 1957. PHOTOS sur DEMANDE. ...................... Photos sur demande ..........................
Phone number : 04 77 32 63 69
P., Bachelier, 1847, un volume in 8 relié en demi-basane noire, dos orné de caissons dorés, filets dorés sur les plats, tranches jaspées (reliure de l'époque), (quelques rousseurs principalement sur les premiers feuillets), 45pp., 311pp., 17 PLANCHES dépliantes
---- BON EXEMPLAIRE BIEN COMPLET DE SES 17 PLANCHES ---- Deuxième tirage ---- Cajori pp. 341, 330, 383, 470
Bruxelles, Hayez 1891 28pp., publié dans et extrait (et donc sans brochure) des "Mémoires couronnés et autres mémoires publiés par l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. collection in-8" Tome XLIV (44), 21cm., texte frais et en bon état, W116707
Paris, Dunod 1868 11 planches (dont 10 à double-page et une dépliante) & 19 planches à double-page, 23cm., brochure originale (dos peu restauré, petite manque de papier), les planches sont frais et en bon état, W107928
Bruxelles, Académie royale (impr.par Hayez) 1871 63 + (1) pp.avec 33 figures dans le texte, Mémoire présenté à la classe des Sciences le 7 novembre 1868, publié dans et extrait de "Mémoires de l'Académie Royale des sciences, des lettres et des beaux-arts de Belgique" Tome XXXVIII (38), in-4, non coupé, W57709
P., Imprimerie royale, 1826-1828, 2 TOMES reliés en un volume in 4 demi-basane marron, dos orné de filets dorés (reliure de l'époque), (quelques rousseurs), T.1 : 8pp., 400pp., T.2 : (2), 123pp.
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE BIEN COMPLET DE CES DEUX TOMES ---- RARE ---- "One of the greatest mathematicians and surely the most universal" (DSB III pp. 131/148) ---- CAUCHY was a prolific and profound mathematician. He was one of the leaders in infusing rigor into analysis. His researches extended over the field of series, of imaginaries, theory of numbers, differential equations, theory of substitutions, theory of functions, determinants, mathematical astronomy, light, elasticity, etc, covering pretty much the whole realm of mathematics, pure and applies... He was the first to publish a rigorous proof of Taylor's theorem. He greatly improved the exposition of fundamental principles of the differential calculus by his mode of considering limits and his new theory on the continuity of function". (Cajori pp. 368/369)**8680/9031/ARM3
Paris, Imprimerie Nationale 1826-1828 Ouvrage complet en 2 tomes, reliés en 1 volume : viii,400 + 123pp., Edition originale de 1826-1828, 28cm., reliure cart. d'amateur usée, quelques rousseurs occasionnelles, peu commun, [Augustin-Louis Cauchy, 1789-1857, était l'un des mathématiciens modernes les plus importants, ayant influencé fortement le développement des mathématiques au 19e siècle], W107940
Phone number : +32476917667
"CAYLEY, ARTHUR. - THE THEORY OF FORMS (QUANTICS) - A NEW ASPECT OF NON-EUCLIDEAN GEOMETRY.
Reference : 42296
(1859)
(London, Richard Taylor and William Francis, 1859). 4to. No wrappers as extracted from ""Philosophical Transactions"" Vol. 149 - Part I. Pp. 61-90. Clean and fine.
First appearance of this pathbreaking paper in which Cayley unites 'Metrical Geometry' and 'Projectice Geometry' by introducing ""imaginary"" elements to metrical properties.""The fundamental notions in metrical geometry are the distance between two points and the angle between two lines. Replacing the concept of distance by another, also involving ""imaginary"" elements, Cayley provided the means for unifying Euclideangeometry and the common non-Euclidean gemoetries into one comprehensive theory.""(Bell in ""Men of Mathematics"").In non-Euclidean geometry prepared the way for Klein's splendid discovery that the geometry of Euclid and the non-Euclidean geometries of Lobatchewsky and Riemann are, all threee, merely different aspects of a more general kind of geometry which includes them as special cases..Dealing with the relations between metrical and projective geometry Klein remarks (In ""Entwicklung der Mathematik"", Teil I p. 148): ""Vor allem kommt für uns sein (Cayley's) berühmtes 'A Sixth Memoir upon Quantics"" im betrachtt. Quantioc heisst soviwel ""Form"", d.h. homogenes Polynom von zwei, drei oder mehr Variablen, wonach man binäre, tertiäre usw. Formen unterscheidet...""
Couverture rigide. Cartonnage de l'éditeur. 210 pages.
Livre. 463 problèmes. Librairie Ch. Delagrave (Collection : Cours des écoles), 1900.
Couverture rigide. Cartonnage de l'éditeur. 210 pages. Rousseurs.
Livre. 463 problèmes. Librairie Ch. Delagrave (Collection : Cours des écoles), Début XXe. Vers 1900.
Paris, Éditions Roret, 1841. Relié, 9,5 cm x 15 cm, 514 pages. Texte de C. Boutereau. Sans les planches annoncées sinon bon état
ONZIEME EDITION REVUE ET CORRIGEE-576 PAGES-PETIT IN 8-GEOMETRIE PLANE: PRELIMINAIRES, LIGNE DROITE ET CERCLE, COURBES DU SECOND DEGRE, THEORIE GENERALE DES COURBES-GEOMETRIE DANS L'ESPACE: DES COORDONNEES, TRANSFORMATION DES COORDONNEES, DU PLAN ET DE LA LIGNE DROITE, GENERATION DES SURFACES-SURFACES DU SECOND DEGRE: CENTRES ET PLANS DIAMETRAUX, REDUCTION DE L'EQUATION DU SECOND DEGRE, DE L'ELLIPSOIDE, DES HYPERBOLOIDES, DES PARABOLOIDES, DISCUSSIONS DES EQUATIONS NUMERIQUES DU SECOND DEGRE, THEOREMES GENERAUX SUR LES SURFACES DU SECOND DEGRE-RELIURE A DOS CUIR, 4 NERFS, TITRES DORES-PLATS MARBRES-COINS DES PLATS FROTTES-INTERIEUR TRES SAIN-(7C)
DELAGRAVE COUVERTURE RIGIDE ETAT BON