ARMAND COLIN. 1938. In-8. Cartonné. Etat d'usage, Coins frottés, Dos plié, Quelques rousseurs. 96 pages. Dos de toile rouge. Premier plat illustré en rouge et bleu. Nombreuses illustrations en couleurs dans et hors texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
DELACHAUX & NIESTLE. 1969. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 62 pages - nombreuses figures noir et blanc dans le texte - annotation à l'encre sur le 1er plat. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
traduit de l'anglais par Clermonde Dominicé Classification Dewey : 372.7-Livre scolaire : mathématiques
Ellipses. 2006. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Quelques rousseurs. 247 pages, nombreuses figures dans le texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Collection Contrôle continu. Classification Dewey : 372.7-Livre scolaire : mathématiques
GAUDEMET-TURCK G., MISSET L., POURRET R.
Reference : RO70076101
(1993)
ISBN : 2010201493
Hachette. 1993. In-4. Broché. Etat d'usage, Couv. légèrement passée, Dos frotté, Intérieur bon état. 256 pages. Tampon de librairie en page de titre.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
LEON EYROLLES. 1944. In-8. Broché. Etat passable, Plats abîmés, Dos abîmé, Intérieur bon état. 381 pages. Plats abîmés et déchirés. 2nd plat détaché. Police en style manuscrit.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
EYROLLES LEON. 1940. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 97 pages - texte dactylographié.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
EYROLLES. 1953. In-8. Broché. Etat d'usage, Tâchée, Coiffe en pied abîmée, Intérieur acceptable. 381 pages illustrées de nombreuses figures dans le texte.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Eyrolles. 1951. In-4. Broché. Etat d'usage, Couv. défraîchie, Manque en coiffe de pied, Intérieur bon état. 343 pages. Premier plat se détachant.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
6e édition. Classification Dewey : 372.7-Livre scolaire : mathématiques
Collection Armand Colin, N°60. 1925. In-12. Broché. Bon état, Couv. légèrement passée, Dos frotté, Non coupé. 206 pages. Coiffe en tête légèrement abîmée.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
CAC, Section de Mathématiques. 33 figures et graphiques. Classification Dewey : 372.7-Livre scolaire : mathématiques
Librairie Armand Colin. 1925. In-12. Relié. Bon état, Coins frottés, Dos satisfaisant, Intérieur acceptable. 206 pages.. . . . Classification Dewey : 510-Mathématiques
"Collection ""Armand Colin"", n°60. Classification Dewey : 510-Mathématiques"
Armand Colin. 1941. In-12. Relié. Bon état, Couv. convenable, Dos satisfaisant, Papier jauni. VI + 206 pages - nombreuses figures en noir et blanc dans le texte.. . . . Classification Dewey : 510-Mathématiques
Collection Armand Colin section de mathématiques n°60 Classification Dewey : 510-Mathématiques
LIBRAIRIE CLASSIQUE EUGENE BELEIN. 1956. In-8. Cartonné. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 160 pages. Nombreux dessins en couleurs dans le texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
EUGENE BELIN. 1956. In-8. Broché. Etat d'usage, Couv. partiel. décollorée, Coiffe en pied abîmée, Intérieur acceptable. 160 pages illustrées de nombreux dessins ne couleurs in texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Librairie Classique Eugène Belin. 1956. In-8. Broché. Etat d'usage, Couv. défraîchie, Coiffe en pied abîmée, Intérieur bon état. 63 pages. Illustré de nombreux schémas et dessins en couleur. Tampon Hommage des éditeurs.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Progression de la semaine 1 à la semaine 30. Classification Dewey : 372.7-Livre scolaire : mathématiques
Vuibert. 1984. In-8. Broché. Etat d'usage, Couv. légèrement passée, Dos frotté, Mouillures. 278 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Prof. à l'université de Bordeaux II. Classification Dewey : 372.7-Livre scolaire : mathématiques
DUNOD. 1961. In-8. Broché. Bon état, Couv. convenable, Dos frotté, Intérieur frais. XLII + 181 + XIV + 184 pages .. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Dunod 1952 in8. 1952. Broché. édition de 1952
dos recollé bords frottés livre jauni qq rousseurs tache sur le 1er plat
H. DUNOD ET E. PINAT. 1919. In-8. Broché. Etat passable, Plats abîmés, Dos fané, Intérieur acceptable. 182 pages. Ecriture en page de titre. manque en second de couverture. Manque sur le dos.. . . . Classification Dewey : 510-Mathématiques
Première partie : Tables trigonométriques. Deuxième partie : Recueil de Coordonnées. Classification Dewey : 510-Mathématiques
DUNOD. 1956. In-8. Broché. Etat d'usage, Livré sans Couverture, Dos satisfaisant, Intérieur acceptable. XLIII + 181 + XIV + 184 pages - Annotations sur la page de titre - Couverture muette - Onglets collés en tête de livre.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
CHEZ LES AUTEURS. 1964. In-12. En feuillets. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 20 pages environ.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Berlin, P. Stankiewicz, 1887. Cont. hcloth, rebacked with old spine preserved and with original printed wrappers pasted on covers. V,(2),290 pp. A few pencil underlinings.
First German edition of Gauss' ""Theoria Combinationis observationum erroribus minimis obnoxiae"" (2819-22) and with 7 supplements on the ""method of least squares"" from Gauss' other writings.
Helmstadt, C. G. Fleckeisen, 1799. 4to. Bound uncut in a very nice recent pastiche-binding in brown half calf with elaborately gilt spine and marbled paper covered boards. With repair to title-page, not affecting text. Small restorations to upper margin of leaf A2 and A3. Brownspotted throughout. 39, (1) pp. + engraved plate.
Rare first edition of Gauss's first book in which he proved the fundamental theorem of algebra which states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Gauss received his doctorate degree for this work, which is considered his first great work. It marks the beginning of an extraordinary ten years often referred to as his 'Triumphal Decade' with landmark achievements such as the publication of 'Disquisitiones Arithmeticae' and the calculation of the orbit of the newly discovered planet Ceres. On june 16, 1799, even before the thesis was published, Gauss was awarded the title Doctor Philosophiae after the usual requirements of an oral examination, particularly tedious to Gauss, was dropped. In a letter to Bolyai, Gauss's close friend, Gauss described his thesis: ""The title describes the main objective of the paper quite well though I devote to it only about a third of the space. The rest mainly contains history and criticisms of the works of other mathematicians (name d'Alembert, Bougainville, Euler, de Foncenex, Lagrange, and the authors of compendia - the latter will presumably not be too happy) about the subject, together with diverse remarks about the shallowness of contemporary mathematics"" ""Professor Pfaff, Gauss's formal research supervisor, shared with Gauss an interest in the foundations of geometry, but it is mere speculation that the two discussed this topic. Gauss's dissertation is about the fundamental theorem of algebra. The proof and discussion avoid the use of imaginary quantities through the work is analytic and geometric in nature"" its underlying ideas are most suitably expressed in the complex domain. Like the law of quadratic reciprocity, the fundamental theorem of algebra was a recurring topic in Gauss's mathematical work - in fact, his last mathematical paper returned to it, this time explicitly using complex numbers."" (Gauss, A Biographical Study, p. 41). ""There is only one thing wrong with this landmark in Algebra. The first two words in the title would imply that Gauss had merely added a 'new' proof to others already known. He should have omitted ""nova"". His was the first proof . Some before him had published what they supposed were proofs of this theorem - usually called the fundamental theorem of algebra - but logical and mathematical rigor Gauss insisted upon a proof, and gave the first"" (Bell, Men of Mathematics, p. 32) ""Gauss ranks, together with Archimedes and Newton, as one of the greatest geniuses in the history of mathematics."" (Printing & the Mind of Man). Dibner 114
Göttingen, Dieterich, 1828. Small 4to. Extracted from: 'Commentationes Societatis Regiae Scientiarum Gottingensis', Volume 6, pp.99-146. 4to. Modern half morocco with gilt spine lettering. Fine and clean throughout.
First edition of the work which inspired one of the greatest breakthroughs in geometry since Euclid.Euler established the theory of surfaces in his 'Recherches sur la courbure des surfaces', 1767. But Euler's treatment of surfaces is not invariant under a natural notion of isometry with his notion of curvature, for example, the plane and cylinder have different curvatures, although one surface can be bent into the other without stretching or contracting. Such two surfaces are locally alike and one would naturally demand that geometry on these two isometric surfaces are the same. Another way of viewing this is to say that geometry on the surface depends on the geometry of the particular space, in which the surface is embedded.In this work Gauss took a fundamentally different approach to the study of surfaces" in contrast to Euler he represented the points of a surface in terms of two external parameters. Gauss then derived his own notions of the fundamental quantities of surfaces, e.g. arc length, angle between curves, and curvature. The Gauss curvature is related to the Euler curvature, but possesses a fundamentally different property, namely that it is intrinsic, e.g. isometric surfaces have the same curvature at all points. Or, in other words: Geometry (in Gauss' notion) on the surface is independent of the particular geometry of the ambient space. This remarkable result is known as Gauss' ""theorema egregium"". With this work Gauss established a whole new (and more proper) theory of surfaces. In the paper Gauss derived several important theorems about the length, area, and angles of figures on surfaces. But the ""theorema egregium"" has deep roots in the foundation of geometry and was to initiate one of the greatest breakthroughs in geometry since Euclid. To Bernhard Riemann (a student of Gauss) this result suggested that a surface could be regarded as a space in itself with its own geometry, having its own notion of distance, angles, etc. independent of the geometry of some other space containing the surface. This idea became the corner stone of Riemann's famous 'Ueber die Hypothesen, welche der Geometrie zu Grunde liegen', 1867.Norman 880.
"GAUSS, CARL FRIEDRICH & NIELS HENRIK ABEL - ANNOUNCING ""THE PRINCIPLE OF LEAST CONSTRAINT"".
Reference : 41607
(1829)
(Berlin, G. Reimer, 1829). 4to. No wrappers. Extracted from ""Journal für die reine und angewandte Mathematik. Hrsg. von A.L. Crelle"", Bd. 4. - Gauss' paper: pp. 232-35. - Abel's papers: pp. 236-278 and pp. 309-348.
First printing of probably Gauss' most importent work in physics by presenting his ""Principle of Least Action"" , which states that the motion of a system of points which are influenced both by each other and by outside conditions is such as to maximize the agreement with free motion, given the existent constraint. The work is based on his Potential Theory.""In it (the present paper) Gauss stated that the law of least constraint: the motion of a system departs a little as possible from free motion, where departure, or constraint, is measured by the sum of products of masses times the squares of their deviations from the path of free motion. He presented it merely as a new formulation equivalent to the well-known principle of d'Alembert. This work seems obviously related to the old meditations on least aquares, but Gauss wrote to Olbers on 31 January 1829 thai it was inspired by studies of capillarity and other physical problems."" (Kenneth O. May in DSB).The two papers (first printings) by Abel (book-lenghts memoirs) are his last works - he died 1829 and they were published after his death - on the theory of ""elliptic functions"", the discovery of which he shared with Jacobi. In these papers he mentions also the great discoveries published in his memoir 1826 (Memoire sur une proprieté générale d'un classe très-etendu de fonctions transcendentes), which was not published until 1841.Together with these 3 memoirs is found a paper by Alexander von Humboldt: ""Über die bei verschiedenen Völkern üblichen Systeme von Zahlzeichen und über den Ursprung des Stellenwerthes in den indischen Zahlen"", 1829. Pp. 205-231.
(Göttingen, Dieterich, 1830). 4to. Partly uncut. Spine closed with paperlabel. In: ""Commentarii Societatis Regiae Scientiarum Gottingensis. Classes Mathematica"", Bd. VII. Pp. (39-) 88. Clean and fine.
First appearance of an importent paper in which Gauss introduced a new method in the calculus of variations and a mathematical treatment of forces of attraction.Gauss had worked on physics already before 1831, publishing ""Uber ein neues allgemeines Grundgesetz der Mechanik"" , which contained the principle of least constraint, and ""Principia generalia theoriae figurae fluidorum in statu aequilibrii"" which discussed forces of attraction. These papers were based on Gauss's potential theory, which proved of great importance in his work on physics. He later came to believe his potential theory and his method of least squares provided vital links between science and nature.""In 1830 appeared Principia generalia theoriae figurae fluidorum in statu aequilibrii, his one contribution to capillarity and an important paper in the calculus of variations, since it was the first solution of a variational problem involving double integrals, boundary conditions, and variable limits.""(DSB).Dunnington, no. 95.- The memoir was reprinted in Ostwald's Klassiker No. 135.