(Berlin, Stockholm, Paris, Almqvist & Wiksell, 1907). 4to. Without wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler"", Bd. 31, pp. 1-63.
First edition. Clebsch and Riemann tried to solve the problem of the uniformization for curves. ""In 1882 Klein gave a general uniformization theorem, but the proof was not complete. In 1883 Poincaré announced his general uniformization theorem but he too had no complete proof. Both Klein and Poincaré continued to work hard to prove this theorem but no decisive result was obtained for twent-five years. In 1907 Poincare (in the offered paper) and Paul Koebe independently gave a proof of this uniformization theorem...With the theorem on uniformization now rigorously established an improved treatment of algebraic functions and their integrals has become possible."" (Morris Kline).
(Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1897). 4to. No wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler."", Bd. 21, pp. 83-97.
First edition. In this paper Poincaré arrives at a new theorem about canonical transformation, and in his later ""Methodes Nouvelles"", he proved this theorem using a variiational principle of mechanics, known today as the Hamilton principle.
Berlin, Stockholm, Paris, F. & G. Beijer, 1882-84. Large4to. As extracted from ""Acta Mathematica"", no backstrip. With title-page and the original wrappers. (except for paper no. 3 and 5 which only has the title page). In ""Acta Mathematica"", volume 1-5. Title pages with library stamp. Internally clean and fine. Vol. I, pp. 1-62" Pp. 193-294 Vol. II, pp. 97-113 Vol. III. pp. 49-92 Vol. IV pp. 201-312" Vol. V pp. 209-278.
First publication of these groundbreaking papers which together constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry. (See Walter, Poincaré, Jules Henri French mathematician and scientist).The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Berlin, Stockholm, Paris, F. & G. Beijer, 1882. Large4to. As extracted from ""Acta Mathematica"", no backstrip. With title-page and front free end-paper. In ""Acta Mathematica"", volume 1. Title pages with library stamp. A fine and clean copy. Pp. (6), 62.
First publication of this groundbreaking paper which became Poincaré first paper in his much celebrated and famous six-paper series which together constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry.The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Gauthier-Villars et Cie, éditeurs à Paris , Oeuvres d'Henri Poincaré - Académie des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1950 Book condition, Etat : Bon broché, sous couverture imprimée éditeur crème In-4 1 vol. - 560 pages
1ere édition, 1950 "Contents, Chapitres : Préface de Louis de Broglie, note d'Albert Chatelet, viii, Texte, 552 pages - Analyse de ses travaux sur l'algèbre et l'arithmétique fait par H. Poincaré - Bibliographie des travaux d'algèbre et d'arithmétique - L'avenir des mathématiques -Etude algébrique des formes - Formes invariantes pour des substitutions - Nombres hypercomplexes - Zéros des polynomes - Algèbre de l'infini - Réseaux et formes quadratiques binaires - Fractions continues - Invariants arithmétiques - Formes quadratiques ternaires et groupes fuchsiens - Fonctions fuchsiennes arithmétiques - Etude arithmétique des formes cubiques ternaires - Réduction simultanée d'un système de formes - Formes binaires - Genre des formes - Nombres premiers - Arithmétique des courbes algébriques - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitative des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. (source : Wikipedia) - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne." couverture propre mais avec quelques rousseurs sur les plats, infime petite déchirure sur le haut du bord droit du plat supérieur, la couverture reste en bon état, intérieur très frais et propre, une page mal ouverte à l'ouverture, cela reste un bon exemplaire - Tome 5 seul
Leipzig, B.G. Teubner, 1882. 8vo. Original printed wrappers, no backstrip. In ""Mathematische Annalen. Begründet 1882 durch Rudolf Friedrich Alfred Clebsch. XIX. [19] Band. 4. Heft."" Entire issue offered. [Poincaré:] Pp. 553-64. [Entire issue: Pp. 435-594].
First printing of Poincaré's paper on his comprehensive theory of complex-valued functions which remain invariant under the infinite, discontinuous group of linear transformations. In 1881 Poincaré had published a few short papers with some initial work on the topic, and in the 1881, Klein invited Poincaré to write a longer exposition of his results to Mathematische Annalen which became the present paper. This, however, turned out to be an invitation to at mathematical dispute:""Before the article went to press, Klein forewarned Poincaré that he had appended a note to it in which he registered his objections to the terminology employed therein. In particular, Klein disputed Poincaré's decision to name the important class of functions possessing a natural boundary circle after Fuch's, a leading exponent of the Berlin school. The importance he attached to this matter, however, went far beyond the bounds of conventional priority dispute. True, Klein was concerned that his own work received sufficient acclaim, but the overriding issue hinged on whether the mathematical community would regard the burgeoning research in this field as an outgrowth of Weierstrassian analysis or the Riemannian tradition."" Parshall. The Emergence of the American Mathematical Research Community. Pp. 184-5.The issue contains the following important contributions by seminal mathematicians:1. Klein, Felix. Ueber eindeutige Functionen mit linearen Transformationen in sich. Pp. 565-68.2. Picard, Emile. Sur un théorème relatif aux surfaces pour lesquelles les coordnnées d´un point quelconque s´experiment par des fonctions abéliennes de deux paramètres. Pp. 578-87.3. Cantor, Georg. Ueber ein neues und allgemeines Condensationsprincip der Singularitäten von Functionen. Pp. 588-94.
Poincaré (Henri) - Gaston Darboux, ed. - N.E. Nörlund et de Ernest Lebon
Reference : 100426
(1995)
Jacques Gabay , Les Grands Classiques Gauthier-Villars Malicorne sur Sarthe, 72, Pays de la Loire, France 1995 Book condition, Etat : Bon broché, sous couverture imprimée éditeur blanche, titre en rouge fort et grand In-8 1 vol. - 703 pages
Réimpression de 1999 de l'édition Gauthier-Villars de 1916 "Contents, Chapitres : Préface de Gaston Darboux, Eloge historique d'Henri Poincaré par Gaston Darboux, LXXI (71 pages), Texte, 632 pages - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitativea des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne. (source : Wikipedia). Charles Auguste Briot, 1817-1882 est un mathématicien et physicien français. Il a publié plusieurs traités avec Bouquet concernant les fonctions elliptiques et les fonctions abéliennes. Il a aussi publié des travaux de physique mathématique : ""Essai sur la théorie mathématique de la lumière"" et ""Théorie mécanique de la chaleur"" d'après son cours donné à la faculté des sciences de Paris pendant l'année 1867-1868. Il conçoit de plus une formule de dispersion lumineuse éponyme, la formule de Briot. Jean-Claude Bouquet, 1819-1885, est un mathématicien français qui travailla notamment avec Charles Briot sur les fonctions doublement périodiques. - Lazarus Immanuel Fuchs (5 mai 1833 - 26 avril 1902) est un mathématicien allemand. Il a laissé son nom aux groupes fuchsiens et aux fonctions fuchsiennes (notions et adjectif créés par Henri Poincaré, avec qui il entretint une correspondance) ainsi qu'à l'équation de Picard-Fuchs et au théorème de Fuchs ; les équations différentielles fuchsiennes sont celles avec des singularités régulières. - Selon Rossana Tazzioli (2010) : ""Cest Poincaré qui, le premier, a compris le lien (tant profond quétonnant) entre la théorie des fonctions fuchsiennes et la géométrie non euclidienne, et pour comprendre ce lien il a dû passer par les groupes de transformations""." couverture à peine jaunie, sinon bel exemplaire, intérieur frais et propre
Poincaré (Henri) - Gaston Darboux, N.E. Norlund et Ernest Lebon, eds.
Reference : 100871
(1916)
Gauthier-Villars et Cie, éditeurs à Paris , Oeuvres d'Henri Poincaré - Académie des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1916 Book condition, Etat : Bon broché, sous couverture imprimée éditeur crème In-4 1 vol. - 703 pages
1 portrait d'Henri Poincaré en frontispice 1ere édition, 1916 "Contents, Chapitres : Préface de Gaston Darboux, Eloge historique d'Henri Poincaré par Gaston Darboux, LXXI (71 pages), Texte, 632 pages - Analyse pure : Sur les fonctions fuchsiennes - Sur une nouvelle application et quelques propriétés importantes des fonctions fuchsiennes - Sur les groupes kleiniens - Sur les groupes discontinus - Sur une fonction analogue aux fonctions modulaires - Sur une classe d'invariants relatifs aux équations linéaires - Sur les groupes des équations linéaires - Sur les groupes hyperfuchsiens - Sur les fonctions fuchsiennes et les formes quadratiques ternaires indéfinies - Grand prix des sciences mathématiques, géométrie - Sur les fonctions uniformes qui se reproduisent par des substitutions linéaires - Théorie des groupes fuchsiens - Mémoire sur les groupes kleiniens - Sur les groupes des équations linéaires - Mémoire sur les fonctions zétafuchsiennes - Les fonctions fuchsiennes et l'arithmétique - Fonctions modulaires et fonctions fuchsiennes - Notes par N.A. Norlund - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitative des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. (source : Wikipedia) - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne." bel exemplaire, infimes traces de pliures sans gravité sur le bord droit du plat supérieur, la couverture reste en très bon état, intérieur frais et propre, imprimé sur papier de qualité, cela reste un bel exemplaire - Tome 2 seul
Leipzig, B.G. Teubner, 1882. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 37, 1890. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Fine and clean. Pp. 182-228. [Entire volume: IV, 604 pp.].
First printing of Poincaré's paper on his comprehensive theory of complex-valued functions which remain invariant under the infinite, discontinuous group of linear transformations. In 1881 Poincaré had published a few short papers with some initial work on the topic, and in the 1881, Klein invited Poincaré to write a longer exposition of his results to Mathematische Annalen which became the present paper. This, however, turned out to be an invitation to at mathematical dispute:""Before the article went to press, Klein forewarned Poincaré that he had appended a note to it in which he registered his objections to the terminology employed therein. In particular, Klein disputed Poincaré's decision to name the important class of functions possessing a natural boundary circle after Fuch's, a leading exponent of the Berlin school. The importance he attached to this matter, however, went far beyond the bounds of conventional priority dispute. True, Klein was concerned that his own work received sufficient acclaim, but the overriding issue hinged on whether the mathematical community would regard the burgeoning research in this field as an outgrowth of Weierstrassian analysis or the Riemannian tradition."" Parshall. The Emergence of the American Mathematical Research Community. Pp. 184-5.The issue contains the following important contributions by seminal mathematicians:1. Klein, Felix. Ueber eindeutige Functionen mit linearen Transformationen in sich. Pp. 565-68.2. Picard, Emile. Sur un théorème relatif aux surfaces pour lesquelles les coordnnées d´un point quelconque s´experiment par des fonctions abéliennes de deux paramètres. Pp. 578-87.
Gauthier-Villars et Cie, éditeurs à Paris , Oeuvres d'Henri Poincaré - Académie des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1950 Book condition, Etat : Très Bon relié, cartonnage éditeur, pleine percaline verte foncée imprimée In-4 1 vol. - 634 pages
1ere édition dans la série des Oeuvres de Poincaré, 1950 "Contents, Chapitres : Préface, ii, Texte, 632 pages - Analyse des travaux sur les fonctions d'une variable (Fonctions uniformes - Fonctions analytiques - Transcendantes entières - Fonctions entières - Fonctions à espaces lacunaires - Théorème de la théorie générale des fonctions - Uniformisation des fonctions analytiques) - Analyse des travaux sur les fonctions de deux variables (Fonctions de deux variables - Propriétés du potentiel et sur les fonctions abéliennes - Représentation conforme) - Analyse des travaux sur les fonctions abéliennes (Fonctions O - Sur un théorème de Riemann, en collaboration avec Emile Picard - Transformation des fonctions fuchsiennes et réduction des intégrales abéliennes) - Analyse des travaux sur diverses fonctions (Substitutions linéaires - Classe de transcendantes uniformes) - Analyse des travaux d'astronomie : Questions diverses (Séries trigonométriques - Convergence des séries trigonométriques, moyen d'augmenter la convergence - Divers (Sur la série de Laplace - Sur les intégrales irrégulières des équations linéaires) - Notes et commentaires - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitative des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. (source : Wikipedia) - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne." cartonnage à peine empoussiéré sans aucune gravité, sinon bel exemplaire, intérieur particulièrement frais et propre - Tome 4 seul
Gauthier-Villars et Cie, éditeurs à Paris , Oeuvres d'Henri Poincaré - Académie des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1965 Book condition, Etat : Bon relié, cartonnage éditeur, pleine percaline verte foncée imprimée In-4 1 vol. - 596 pages
nouveau tirage de 1965 "Contents, Chapitres : Première section : Analyse pure : 1. Equations différentielles (suite) : Sur un théorème de M. Fuchs - Sur l'intégration algébrique des équations différentielles - Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré - Sur les équations linéaires à intégrales algébriques - Sur l'intégration des équations linéaires par les moyens des fonctions abéliennes - Sur l'intégration algébrique des équations linéaires - Groupes continus - Quelques remarques sur les groupes continus, nouvelles remarques - 2. Théorie des fonctions, intégrales simples et multiples : Analyse des travaux sur les intégrales, faite par H. Poincaré - Bibliographie de la deuxième partie - Sur la réduction des intégrales abéliennes - Sur les intégrales de différentielles totales - Sur une généralisation du théorème d'Abel - Sur la réduction des intégrales abéliennes - Sur la réduction des intégrales abéliennes et la théorie des fonctions fuchsiennes - Sur les résidus des intégrales doubles - Remarques sur l'équation de Fredholm - Sur quelques applications de la méthode de Fredholm - Sur les équations de Fredholm - Remarques diverses sur l'équation de Fredholm - Notes et errata - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitative des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. (source : Wikipedia) - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne." cartonnage à peine empoussiéré sans aucune gravité, sinon bel exemplaire, intérieur particulièrement frais et propre - Tome 3 seul
Gauthier-Villars et Cie, éditeurs à Paris , Oeuvres d'Henri Poincaré - Académie des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1928 Book condition, Etat : Bon broché, sous couverture imprimée éditeur crème In-4 1 vol. - 409 pages
1ere édition, 1928 "Contents, Chapitres : Préface de Paul Appell - Première section : Analyse pure : 1. Présentation, CXXVII, Texte, 382 pages - Analyse des travaux de Henri Poincaré faite par lui-même, équations différentielles - Note sur les propriétés des fonctions définies par les équations différentielles - Sur les propriétés des fonctions définies par les équations aux différences partielles (Thèse présentée à la Faculté des Sciences, 1er août 1879) - Sur les courbes définies par une équation différentielle - Mémoire sur les courbes définies par une équation différentielle - Sur les courbes définies par les équations différentielles - Sur l'intégration des équations différentielles par les séries - Sur les séries trigonométriques - Sur les séries de polynomes - Sur les équations linéaires aux différentielles ordinaires et aux différences finies - Sur les intégrales irrégulières des équations linéaires - Remarques sur les intégrales irrégulières, réponse de M. Thomé - Extrait d'un mémoire - Notes de Jules Drach - Henri Poincaré est un mathématicien, physicien théoricien et philosophe des sciences français, né le 29 avril 1854 à Nancy et mort le 17 juillet 1912 à Paris. Poincaré a réalisé des travaux d'importance majeure en optique et en calcul infinitésimal. Ses avancées sur le problème des trois corps en font un fondateur de l'étude qualitative des systèmes d'équations différentielles et de la théorie du chaos ; il est aussi un précurseur majeur de la théorie de la relativité restreinte et de la théorie des systèmes dynamiques. Il est considéré comme un des derniers grands savants universels, maîtrisant l'ensemble des branches des mathématiques de son époque et certaines branches de la physique. (source : Wikipedia) - Poincaré est le fondateur de la topologie algébrique. Ses principaux travaux mathématiques ont eu pour objet la géométrie algébrique, des types de fonctions particuliers les fonctions dites « automorphes » (il découvre les fonctions fuchsiennes et kleinéennes), les équations différentielles La notion de continuité est centrale dans son travail, autant par ses répercussions théoriques que pour les problèmes topologiques qu'elle entraîne." infimes traces de pliures sur les bords des plats sans aucune gravité, tres légère trainée sombre sur le haut du bord gauche du plat supérieur, rien de grave, sinon bel exemplaire, intérieur frais et propre, imprimé sur papier de qualité, cela reste un bel exemplaire - Tome 1 seul
Berlin, Stockholm, Paris, Beijer, 1899. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 22, 1899. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 1-18" Pp. 89-178" Pp. 201-358.[Entire volume: (4), 388, 2 pp].
First printing of these important papers: POINCARÉ: First edition. ""As soon as he came into contact with the work of Riemann and Weierstrass on Abelian Functions and algebraic geometry, Poincaré was very much attracted by those fields. His papers on these subjects occupy in his complete works as much space as those on automorphic functions, their dates ranging from 1881 to 1911. One of his main ideas in these papers is that of ""reduction"" of Abelian functions. Generalizing particular cases studied b Jacobi, Weierstrass, and Picard, Poincaré proved the general ""complete reducibility"" theorem...""(DSB).VOLTERRA: First edition. As the north and south poles, instead of being fixed points on the earth's surface, wander round within a circle of ab. 5o ft. in diameter, the result is a variability of terrestial latitudes generally. Volterra gives an elaborate mathematical analysis of these yearly fluxtuations.
Bachelier, Paris. 1848. In-8. Broché. Etat d'usage, Couv. légèrement passée, Manque en coiffe de tête, Rousseurs. 526 pages. Avec 3 planches dépliables de figures géométriques et gravures en noir en fin d'ouvrage. Un tiers du dos manquant.. . . . Classification Dewey : 510-Mathématiques
9e édition revue. Quatre mémoires sur la composition des Moments et des Aires, sur le Plan invariable du Système du monde, sur la Théorie générale de l'Equilibre et du Mouvement des systèmes, et sur une Théorie nouvelle de la Rotation des Corps. Ouvrage adopté pour l'Instruction Publique. Classification Dewey : 510-Mathématiques
Bruxelles, Ad. Wahlen et cie. 1838 323pp.+ 4 planches hors texte (avec 91 figures), 7e édition revue et considérablement augmentée, 23cm., reliure cart. peu usagée, dos en cuir avec titree doré, qqs. rousseurs, bon état, W89918
P., Imprimerie Royale/Bachelier Bachelier, 1819/1845, un volume in 4 relié en demi-chagrin marron (reliure de l'époque),
---- DEUX MEMOIRES ORIGINAUX PAR J. POINSOT ---- BEL EXEMPLAIRE ayant appartenu à Edouard Sauvage avec son ex-libris contrecollé sur au verso du premier plat ----- BON EXEMPLAIRE relié en demi-chagrin marron (reliure de l'époque) ---- "Poinsot was determined to publish only fully developed results and to present them with clarity and elegance. Consequently he left a rather limited body of work which was devoted mainly to mechanics, geometry, and number theory. His contributions to number theory (1818-1849) have been analyzed by L.E. Dickson. They deal primarily with primitive roots, certain Diophantine equations and the expression of a number as a difference of two squares". (DSB XI pp. 61/62)**6543/N4
Paris, Vve Courcier, 1821, In-8° , XVI-328 p., 4 planches dépliantes en fin de volume. Un volume relié. Reliure plein veau d'époque fatiguée, coiffe supérieure manquante, coins usés. Dos lisse très orné, frotté dans sa partie supérieure.
La Diffusion Scientifique. 1953. In-12. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 108 pages. Morceau de scotch sur le dos.. . . . Classification Dewey : 510-Mathématiques
Traité pratique de numérologie. Classification Dewey : 510-Mathématiques
Berger-Levrault et cie. 1905. In-8. Broché. A relier, Couv. défraîchie, Dos abîmé, Papier jauni. 392 pages. Ex-libris à l'encre en page de garde et de faux titre. Nombreuses rousseurs. Partiellement désolidarisé. Tampon en page de titre. Accrocs et déchirures en dos et plats.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Bibliothèque d'enseignement administratif. Classification Dewey : 372.7-Livre scolaire : mathématiques
Librairie Philosophique J. Vrin Malicorne sur Sarthe, 72, Pays de la Loire, France 1931 Book condition, Etat : Bon broché, sous couverture imprimée éditeur In-8 1 vol. - 226 pages
1ere édition Contents, Chapitres : Introduction - De la probabilité en général - De la classification concrète des inductions - Des inductions portant sur l'objectivité d'une grandeur - Des inductions portant sur des lois - Les inductions de causalité concrète - Les inductions de corrélation - Corrélations sociologiques - Conclusion legere dechirure sans manque au bas du dos, quelques rousseurs sur les plats de la couverture, intérieur en bon état, papier legerement jauni, tres legere courbure dans le sens de la longueur des 40 dernieres pages sans gravité
P., Volland, 1811. In-8 relié demi basane (rel. d'époque), dos long très orné, VIII-271-30 pages-4 planches dépliantes. Très bon état.
La librairie fermera ses portes en 2025. Des remises de 25 à 50 % peuvent s'appliquer au cas par cas.
Chez Mme Veuve Courcier, Paris. 1811. In-8. Relié demi-cuir. Etat d'usage, Couv. légèrement passée, Dos très frotté, Rousseurs. 507 pages pour le tome I et 500 pages pour le tome II. Illustrés de gravures en noir et blanc sur planches dépliables hors texte. Auteur, titre, tomaison et filets dorés sur les dos. Etiquettes de code sur les dos. Tampons de bibliothèque en pages de titre. Fortes épidermures sur les dos. Signatures et taches en pages de garde.. . . . Classification Dewey : 510-Mathématiques
S.D. Poisson. Prof. à l'Ecole Polytechnique et à la Faculté des Sciences de Paris, et Membre-adjoint du Bureau des Longitudes. Classification Dewey : 510-Mathématiques
In 4°(270 x 210 mm) Plein veau époque 2 parties en 1 volume, 532 pp, puis 72 pp et 1 planche repliée. dos légèrement fendu, édition originale de 1835, complet de son supplément paru en 1837. Important travail dans lequel Poisson formule les équations pour la distribution de la chaleur dans les corps. Contrairement à Fourier, qui soutient dans son Mémoire analytique de la chaleur, que la conductibilité de la chaleur est contenue dans le mouvement des flux, Poisson démontre qu'elle dérive d'un coefficient d'absorption reconstituant une dimension négligée. C'est sur ce point que la contribution du scientifique, en relation avec son modèle mécanique pour la distribution de la chaleur est la plus fructueuse. In 4°(270 x 210 mm) Full calf period 2 parts in 1 volume, 532 pp, then 72 pp and 1 folded board. spine slightly split, original edition of 1835, complete of its supplement published in 1837. Important work in which Poisson formulates the equations for the distribution of heat in the bodies. Contrary to Fourier, who maintains in his Analytical Memory of Heat, that the conductivity of heat is contained in the movement of flows, Poisson demonstrates that it derives from an absorption coefficient reconstituting a neglected dimension. It is on this point that the scientist's contribution, in relation to his mechanical model for the distribution of heat, is most fruitful.
Paris, Bachelier, 1839. 4to. Contemporary hcalf, gilt spine with gilt lettering. A paperlabel pasted on spine. Stamps on titlepage. VIII,226,(1) pp. Broadmargined on good paper. Light scattered brownspots.
First edition. Poisson made importent contribution to many categories in mathematics and mathematical physics, ""Poisson'sTheorem"", the mathematical treatment of attractive forces etc.. ""The Recherches sur le Mouvement...projectiles (the item offered) is the first workto deal with the subject by taking into account the rotation of the earth and the complementary acceleration resulting from the motion of the system of reference. A decade after its publication it inspired Focault's famous experiment demonstrating the earth's rotation""(Pierre Costabel in DSB). - In this researchhe extended Lapalce's analysis to allow also for the rotation of the projectile in motion, and it helped Léon Foucault to conceive of his pendulum to demonstrate the rotation of the earth. - The work is a collection of memoirs. ""Ce recherches se composent de plusieurs Mémoires lus par l'Auteur à l'Academie des Sciences et insérés dans les XXVIe et XXVIIe cahiers du Journal de l'Ecole Polytechnique."" (From verso of halftitle) - Bibliotheca Mechanica p. 261.
(Berlin, G. Reimer, 1834). 4to. No wrappers. Extracted from ""Journal für die reine und angewandte Mathematik. Hrsg. von A.L. Crelle"", Bd. XII. Pp. 258-262.
First apperance of Poisson's preamble to his famous work ""Théorie mathématique de la Chaleur"", published 1835. “Poisson scored a point in this work by demonstrating how the conductibility of heat in the interior of bodies, far from being contained in the notion of flux as Fourier had held, must be derived from an absorption coefficient that restores a neglected functional dimension. It was in this area that … Poisson’s mechanical model for conduction of heat was the most fruitful. That conception enabled Poisson to understand on the molecular scale the complete and correct equation for radiation of heat” (DSB)