(Stockholm, Beijer), 1885. 4to. As extracted from ""Acta Mathematica, 21. Band]. No backstrip. Fine and clean. Pp. 259-380.
First printing of Poincaré's famous paper in which he proved that a rotating fluid such as a star changed its shape from a sphere to an ellipsoid to a pear-shape before breaking into two unequal portions. ""This work, which contained the discovery of new, pear-shaped figures of equilibrium, aroused considerable attention because of its important implications for cosmogony in relation to the evolution of binary stars and other celestial bodies."" (The Princeton Companion to Mathematics, P. 786)Another famous paper of Poincaré in celestial mechanics is the one he wrote in 1885 on the shape of a rotating fluid mass submitted only to the forces of gravitation. Maclaurin had found as possible shapes some ellipsoids of revolution to which Jacobi had added other types of ellipsoids with unequal axes, and P. G. Tait and W. Thomson some annular shapes. By a penetrating analysis of the problem, Poincaré showed that still other ""pyriform"" shapes existed. One of the features of his interesting argument is that, apparently for the first time, he was confronted with the problem of minimizing a quadratic form in ""infinitely"" many variables."" (DSB)
Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1897. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 21, 1897. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 83-97"" Pp. 331-341.[Entire volume: (6), 376 pp + 4 plates].
First printing of this paper in which Poincaré arrives at a new theorem about canonical transformation, and in his later ""Methodes Nouvelles"", he proved this theorem using a variiational principle of mechanics, known today as the Hamilton principle.Also included is the first printing of Poincaré's principal address at the first International Congress of Mathematicians held in Zürich in 1897.
Stockholm, Beijer, 1885. 4to. As extracted from ""Acta Mathematica, 21. Band]. No backstrip. Fine and clean. Pp. 83-97.
First printing of Poincaré's paper in which he developed the idea published by Fuchs in 1884. Fuchs established that the equation with fixed branch points can be made into a Riccati equation if its genus - the genus of the corresponding Riemann surface - with respect to u and du/dz is zero and can be integrated using elliptic functions if the genus is 1.
Berlin, G. Reimer, 1912. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 35, 1912. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. Pp. 1-28. [Entire volume: (4), 398, (1), 27, 19 pp].
First appearance of Poincaré's report on 1910 Bolyai Prize which was awarded to David Hilbert in recognition of his work in fields of invariant theory, transcendent number (e constant after Lindemann), arithmetic, the (Hilbert-)Waring theorem, geometry, integral equations and the Dirichlet’s principle.In 1910, Hilbert became only the second winner of the Bolyai Prize of the Hungarian Academy of Sciences. It was the recognition of the fact that Hilbert was one of the leading mathematicians of his time. The first winner of the prize in 1905 was Henri Poincare, the most prolific mathematician of the 19th century.Poincaré about the works and achievements of David Hilbert in fields of invariant theory, transcendent number (e constant after Lindemann), arithmetic, the (Hilbert-)Waring theorem, geometry, integral equations and the Dirichlet’s principle.
(Berlin, Uppsala & Stockholm, Paris, 1895). 4to. Without wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler"", Bd. 20, pp. 59-142.
First edition. In this paper Poincaré succeeded in converting differential equations into integral equations. ""It became a major technique for solving initial-and boundary-value problems of ordinary and partial differential equations and was the strongest impetus for the study of integral equations."" (Morris Kline).
[Berlin, Stockholm, Paris, Beijer, 1897]. 4to. Without wrappers as extracted from ""Acta Mathematica. Hrdg. von G. Mittag-Leffler."", Bd. 20, pp. 59-142.
First printing of Poincaré's paper in which he succeeded in converting differential equations into integral equations. ""It became a major technique for solving initial-and boundary-value problems of ordinary and partial differential equations and was the strongest impetus for the study of integral equations."" (Morris Kline).
[Berlin, Stockholm, Paris, F. & G. Beijer, 1882]. Large4to. As extracted from ""Acta Mathematica"", In ""Acta Mathematica"", volume 1. Clean and fine. Pp. 193-294.
First printing of Poincaré's famous paper which conjectured the uniformization theorem for (the Riemann surfaces of) algebraic curves. It also constitute the second paper in Poincaré's exceedingly important series of six paper's which together represent the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry.The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Berlin, Stockholm, Paris, F. & G. Beijer, 1884. 4to. In contemporary half cloth. Stamps to title-page and last leaf. In ""Acta Mathematica"", no 5, 1884/1885. Entire issue offered. Pp. 209-278. [Entire issue: (4) 408 pp.].
First publication of this groundbreaking paper which together with his three other papers on the pubject (not offered here) constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry. (See Walter, Poincaré, Jules Henri French mathematician and scientist).The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
(Berlin, Uppsala & Stockholm, Paris, 1905. 4to. Bound in contemporary half cloth. In ""Acta Mathematica Hrsg. von G. Mittag-Leffler."", Bd. 29. Entires issue offered. Fine and clean. Pp. 235-272. [Entire volume: (4), 433 pp.].
Second of this paper in which Poincaré comments on the Swedish astronomer work.The offered issue contain many other papers by contemporary mathematicians.
(Berlin, Uppsala & Stockholm, Paris, 1892 a. 1897. 4to. Without wrappers as extracted from ""Acta Mathematica Hrsg. von G. Mittag-Leffler."", Bd. 16 and 20, pp. 297-339 and pp. 313-355.
First edition of these importent papers on the polarization of light. The geometrical representation of different states of polarization by points on a sphere are due to Poincare. The method shown to visualize the different states of polarization is given in these two papers and the method is called Poincare's Sphere.
(Berlin, Uppsala & Stockholm, Paris, 1892 a. 1897. 4to. Without wrappers as extracted from ""Acta Mathematica Hrsg. von G. Mittag-Leffler."", Bd. 16 and 20. Fine and clean. Pp. 297-339 (+) pp. 313-355.
First edition of these important papers on the polarization of light. The geometrical representation of different states of polarization by points on a sphere is due to Poincare. The method shown to visualize the different states of polarization is given in these two papers and the method is called Poincare's Sphere.
(Stockholm, F.& G. Beier), 1885. 4to. Orig. printed wrappers (to Acta Mathematica 4:3). Extracted from ""Acta Mathematica"", Vol. 4. Pp. 201-312. Clean and fine.
First appearance of a major paper on differential equations of the first order""...the whole theory of automorphic functions was from the start guided by the idea of integrating linear differential equations with algebraic coefficients. Poincaré simultaneously investigated the local problem of linear differential equation in the neighborhood of an ""irregular"" singular point, showing for the first time how asymptotic developments could be obtained for the integrals. A little later (1884, the paper offered) he took up the question, also started by I.L. Fuchs, of the determination of all differential equations of the first order (in the complex domain) algebraic in y and y' and having fixed singular points"" his rechearches was to be extended by Picard for equations of the second order, and to lead to the spectacular results of Painlevé and his school at the beginning of the tweentieth century.""(DSB).
(Berlin, Uppsala & Stockholm, Paris, 1886). 4to. Without wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler."", Bd. 8, pp. 295-344.
First edition. ""The full recognition of the nature of those divergent series that are useful in the representation and calculation of functions and a formal definition of those series wer achieved by Poincaré and Stieltjes independently in 1886. Poincaré called these series asymptotic while Stieltjes continued to use the term semiconvergent. Poincaré took up the subject in order to further the solution of linear differential equations. Impressed by the usefulness of divergent series in astronomy, he sought to determine which were useful and why. he succededed in islolating and formulating the essential property...Poincaré applied his theory of asymptotic series to diffrential equations, and theree are many such uses in his treatise on celestical mechanics, 'Les Methodes nouvelles de la mechanique céleste"". (Morris Kline).
(Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1898). 4to. Without wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler."", Bd. 22, pp. 89-178.
First edition. ""As soon as he came into contact with the work of Riemann and Weierstrass on Abelian Functions and algebraic geometry, Poincaré was very much attracted by those fields. His papers on these subjects occupy in his complete works as much space as those on automorphic functions, their dates ranging from 1881 to 1911. One of his main ideas in these papers is that of ""reduction"" of Abelian functions. Generalizing particular cases studied b Jacobi, Weierstrass, and Picard, Poincaré proved the general ""complete reducibility"" theorem...""(DSB).
(Berlin, Stockholm, Paris, Almqvist & Wiksell, 1907). 4to. Without wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler"", Bd. 31, pp. 1-63.
First edition. Clebsch and Riemann tried to solve the problem of the uniformization for curves. ""In 1882 Klein gave a general uniformization theorem, but the proof was not complete. In 1883 Poincaré announced his general uniformization theorem but he too had no complete proof. Both Klein and Poincaré continued to work hard to prove this theorem but no decisive result was obtained for twent-five years. In 1907 Poincare (in the offered paper) and Paul Koebe independently gave a proof of this uniformization theorem...With the theorem on uniformization now rigorously established an improved treatment of algebraic functions and their integrals has become possible."" (Morris Kline).
(Berlin, Uppsala & Stockholm, Paris, Almqvist & Wiksell, 1897). 4to. No wrappers as extracted from ""Acta Mathematica. Hrsg. von G. Mittag-Leffler."", Bd. 21, pp. 83-97.
First edition. In this paper Poincaré arrives at a new theorem about canonical transformation, and in his later ""Methodes Nouvelles"", he proved this theorem using a variiational principle of mechanics, known today as the Hamilton principle.
Berlin, Stockholm, Paris, F. & G. Beijer, 1882-84. Large4to. As extracted from ""Acta Mathematica"", no backstrip. With title-page and the original wrappers. (except for paper no. 3 and 5 which only has the title page). In ""Acta Mathematica"", volume 1-5. Title pages with library stamp. Internally clean and fine. Vol. I, pp. 1-62" Pp. 193-294 Vol. II, pp. 97-113 Vol. III. pp. 49-92 Vol. IV pp. 201-312" Vol. V pp. 209-278.
First publication of these groundbreaking papers which together constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry. (See Walter, Poincaré, Jules Henri French mathematician and scientist).The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Berlin, Stockholm, Paris, F. & G. Beijer, 1882. Large4to. As extracted from ""Acta Mathematica"", no backstrip. With title-page and front free end-paper. In ""Acta Mathematica"", volume 1. Title pages with library stamp. A fine and clean copy. Pp. (6), 62.
First publication of this groundbreaking paper which became Poincaré first paper in his much celebrated and famous six-paper series which together constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry.The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Leipzig, B.G. Teubner, 1882. 8vo. Original printed wrappers, no backstrip. In ""Mathematische Annalen. Begründet 1882 durch Rudolf Friedrich Alfred Clebsch. XIX. [19] Band. 4. Heft."" Entire issue offered. [Poincaré:] Pp. 553-64. [Entire issue: Pp. 435-594].
First printing of Poincaré's paper on his comprehensive theory of complex-valued functions which remain invariant under the infinite, discontinuous group of linear transformations. In 1881 Poincaré had published a few short papers with some initial work on the topic, and in the 1881, Klein invited Poincaré to write a longer exposition of his results to Mathematische Annalen which became the present paper. This, however, turned out to be an invitation to at mathematical dispute:""Before the article went to press, Klein forewarned Poincaré that he had appended a note to it in which he registered his objections to the terminology employed therein. In particular, Klein disputed Poincaré's decision to name the important class of functions possessing a natural boundary circle after Fuch's, a leading exponent of the Berlin school. The importance he attached to this matter, however, went far beyond the bounds of conventional priority dispute. True, Klein was concerned that his own work received sufficient acclaim, but the overriding issue hinged on whether the mathematical community would regard the burgeoning research in this field as an outgrowth of Weierstrassian analysis or the Riemannian tradition."" Parshall. The Emergence of the American Mathematical Research Community. Pp. 184-5.The issue contains the following important contributions by seminal mathematicians:1. Klein, Felix. Ueber eindeutige Functionen mit linearen Transformationen in sich. Pp. 565-68.2. Picard, Emile. Sur un théorème relatif aux surfaces pour lesquelles les coordnnées d´un point quelconque s´experiment par des fonctions abéliennes de deux paramètres. Pp. 578-87.3. Cantor, Georg. Ueber ein neues und allgemeines Condensationsprincip der Singularitäten von Functionen. Pp. 588-94.
Leipzig, B.G. Teubner, 1882. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 37, 1890. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Fine and clean. Pp. 182-228. [Entire volume: IV, 604 pp.].
First printing of Poincaré's paper on his comprehensive theory of complex-valued functions which remain invariant under the infinite, discontinuous group of linear transformations. In 1881 Poincaré had published a few short papers with some initial work on the topic, and in the 1881, Klein invited Poincaré to write a longer exposition of his results to Mathematische Annalen which became the present paper. This, however, turned out to be an invitation to at mathematical dispute:""Before the article went to press, Klein forewarned Poincaré that he had appended a note to it in which he registered his objections to the terminology employed therein. In particular, Klein disputed Poincaré's decision to name the important class of functions possessing a natural boundary circle after Fuch's, a leading exponent of the Berlin school. The importance he attached to this matter, however, went far beyond the bounds of conventional priority dispute. True, Klein was concerned that his own work received sufficient acclaim, but the overriding issue hinged on whether the mathematical community would regard the burgeoning research in this field as an outgrowth of Weierstrassian analysis or the Riemannian tradition."" Parshall. The Emergence of the American Mathematical Research Community. Pp. 184-5.The issue contains the following important contributions by seminal mathematicians:1. Klein, Felix. Ueber eindeutige Functionen mit linearen Transformationen in sich. Pp. 565-68.2. Picard, Emile. Sur un théorème relatif aux surfaces pour lesquelles les coordnnées d´un point quelconque s´experiment par des fonctions abéliennes de deux paramètres. Pp. 578-87.
Berlin, Stockholm, Paris, Beijer, 1899. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 22, 1899. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 1-18" Pp. 89-178" Pp. 201-358.[Entire volume: (4), 388, 2 pp].
First printing of these important papers: POINCARÉ: First edition. ""As soon as he came into contact with the work of Riemann and Weierstrass on Abelian Functions and algebraic geometry, Poincaré was very much attracted by those fields. His papers on these subjects occupy in his complete works as much space as those on automorphic functions, their dates ranging from 1881 to 1911. One of his main ideas in these papers is that of ""reduction"" of Abelian functions. Generalizing particular cases studied b Jacobi, Weierstrass, and Picard, Poincaré proved the general ""complete reducibility"" theorem...""(DSB).VOLTERRA: First edition. As the north and south poles, instead of being fixed points on the earth's surface, wander round within a circle of ab. 5o ft. in diameter, the result is a variability of terrestial latitudes generally. Volterra gives an elaborate mathematical analysis of these yearly fluxtuations.
Bachelier, Paris. 1848. In-8. Broché. Etat d'usage, Couv. légèrement passée, Manque en coiffe de tête, Rousseurs. 526 pages. Avec 3 planches dépliables de figures géométriques et gravures en noir en fin d'ouvrage. Un tiers du dos manquant.. . . . Classification Dewey : 510-Mathématiques
9e édition revue. Quatre mémoires sur la composition des Moments et des Aires, sur le Plan invariable du Système du monde, sur la Théorie générale de l'Equilibre et du Mouvement des systèmes, et sur une Théorie nouvelle de la Rotation des Corps. Ouvrage adopté pour l'Instruction Publique. Classification Dewey : 510-Mathématiques
Bruxelles, Ad. Wahlen et cie. 1838 323pp.+ 4 planches hors texte (avec 91 figures), 7e édition revue et considérablement augmentée, 23cm., reliure cart. peu usagée, dos en cuir avec titree doré, qqs. rousseurs, bon état, W89918
P., Imprimerie Royale/Bachelier Bachelier, 1819/1845, un volume in 4 relié en demi-chagrin marron (reliure de l'époque),
---- DEUX MEMOIRES ORIGINAUX PAR J. POINSOT ---- BEL EXEMPLAIRE ayant appartenu à Edouard Sauvage avec son ex-libris contrecollé sur au verso du premier plat ----- BON EXEMPLAIRE relié en demi-chagrin marron (reliure de l'époque) ---- "Poinsot was determined to publish only fully developed results and to present them with clarity and elegance. Consequently he left a rather limited body of work which was devoted mainly to mechanics, geometry, and number theory. His contributions to number theory (1818-1849) have been analyzed by L.E. Dickson. They deal primarily with primitive roots, certain Diophantine equations and the expression of a number as a difference of two squares". (DSB XI pp. 61/62)**6543/N4
Paris, Vve Courcier, 1821, In-8° , XVI-328 p., 4 planches dépliantes en fin de volume. Un volume relié. Reliure plein veau d'époque fatiguée, coiffe supérieure manquante, coins usés. Dos lisse très orné, frotté dans sa partie supérieure.