London: R. Ackermann's Repository, 1808 Planche numéro 9 du "Microcosme de Londres" d'Ackermann. Une belle aquatinte. Première édition. La plaque mesure 24 cm x 29 cm. La taille du montage est de 32,5 cm sur 38 cm (12Ÿ sur 15 pouces). Les détails architecturaux ont été dessinés par Pugin, et Rowlandson a dessiné les personnages (les deux sont crédités sur la feuille). L'aquatinte a été réalisée par J. Bluck. Très belle impression propre de cette planche, avec une bonne mise en couleur. Une très petite rousseur fermée sur le bord inférieur de la planche. Ackermann a réalisé cette uvre entre 1807 et 1810. L'un des plus grands livres de planches en couleurs. "Les planches de Rowlandson et de Pugin présentent une image inégalée de Londres au début du XIXe siècle, d'une valeur historique, car de nombreux bâtiments n'existent plus." (Tooley).
Plate number 9 from Ackermann's "Microcosm of London". A lovely aquatint. First edition. Plate is 24cm x 29 cm. Mount size is 32.5cm by 38cm (12Ÿ by 15 inches). The architectural details were drawn by Pugin, and Rowlandson drew the figures (both are credited on the sheet). The aquatinting was done by J. Bluck. Very nice clean impression of this plate, with good colouring. A very small closed foxing spot to the bottom edge of the plate. Ackermann produced this work between 1807 and 1810. One of the greatest of the colour plate books. "The plates by Rowlandson and Pugin present an unrivaled picture of London in early 19th century, of historic value, as many of the buildings no longer exist." (Tooley) .
Berlin, Julius Springer, 1928. 8vo. Without wrappers as extracted from ""Mathematische Annalen, 99. Band. 1928"". Pasted on backstrip in marbled paper. Internally fine and clean. Pp. 118-33
First printing of Ackermann's seminal paper in which the famous and exceedingly influential ""Ackermann Function"" was presented for the first time: ""One of the most important functions in computer science"". (Darling, The universal book of mathematics, p. 6)After Ackermann had published his function many mathematicians modified it and altered it to suit various purposes so that today ""the Ackermann function"" may refer to any of numerous variants of the original function.
Berlin, Julius Springer, 1925. In: 'Mathematische Annalen', volume 93, pp.1-36. Entire volume offered here (314 pp.) Bound in modern full cloth. Ex-library stamp on title page.
First edition of Ackermann's doctorial dissertation. Ackermann was a student of Hilbert and played an important role in the development of 20th century mathematical logic.
Volkstadt b. Rudolfstadt: , s.d. in-4 oblong. 47 planches représentant un millier de modèles (principalement des groupes) produits par cette fabrique, avec feuillets intercalaires indiquant les prix. Broché, couv. défraichie.
[Catalogue de la fabrique de porcelaines ACKERMANN et FRITZE] . (Volkstadt b. Rudolfstadt: Ackermann & Fritze , s.d. (c. 1900 ?)). [M.C.: arts décoratifs, faïence porcelaine, Allemagne]
Noir sur blanc (4/2016)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782882504210
Noir sur blanc (4/2016)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782882504111
Noir sur blanc (11/2021)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782882507112
Albin Michel (1/2025)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782226496027
Noir sur blanc (6/2017)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782882504722
SHAS-GSK Societe d'histoire de l'art en Suisse (1/2015)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9783037971789
Editions de la Sarine (10/2009)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782883551305
Editions de la Sarine (10/2004)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782883550834
SLATKINE
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782832109120
La Boîte à Bulles (9/2023)
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782849534700
SLATKINE
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782832112786
SEUIL
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782021515626
SLATKINE
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9782832107874
Editions Empreintes (1 janvier 1985)
Livre à l'état de neuf, très frais sans annotations ni défauts dissmulés.
Ache, Léandre Ackermann, Albertine, Anda, André André, Alexandra Bogucka, Adrienne Barman, Anne Bory, Ainhoa Cayuso, Anouck Fontaine, Joëlle Isoz, Louiza, Renata Martino, Mascha, Popy Matigot, Maurane Mazars, Barbara Meuli, Malizia Moulin, Sarah Najjar, Tatiana Nazarova, Lori Raven, Irene Schoch, Les Soeurs Forêt Noire, Amélie Strobino, Vamille et Fanny Vaucher.
Reference : lc_71891
SAINT AUGUSTIN Pillet (21 juin 2007)
Cartonné, comme neuf. Trient (Suisse, vallée, VS) [photographies aériennes] Mont-Blanc (massif) Suisse [photographies aériennes]
[Burney, Martin, Sharpe, Barrett, Landseer, Knight, Chishlome, Prout, Corbould, Purser, Stephanoff, Phillips, Westall, West.] - [ACKERMANN, Rudolf].
Reference : 933
(1831)
— London : R. Ackermann (impr. Thomas Davison à Londres), 1831. In-12, 144 x 90 : frontispice, titre, ix, 386 pp., 13 planches. — Cartonnage d’éditeur vert, à la bradel, orné d’un décor gravé par Mitan différent sur les deux plats, dos lisse orné d’un décor gravé, tranches dorées, étui.
Charmant recueil de contes de noël en anglais, publié à l’initiative de Rudolf Ackermann (1764-1834). Imprimeur et marchand d’estampes britannique d’origine allemande, ce dernier est connu pour avoir inventé divers procédés d’impressions lithographiques en couleurs.On trouve dans ce keepsake des auteurs tels que : James Hogg (1770-1835) connu sous le nom du Bergé d’Ettrick (The Ettrick Shepherd) ; Thomas Haynes Bayly (1797-1839) ; Richard Polwhele (1760-1838) ; Susanna Strickland (1803-1885), William Lisle Bowles (1862-1850)…L’illustration se compose d’une gravure en relief (blanche sur fond ocre), d’un titre gravé et de 13 planches gravées par Chevalier, Finden, Agar, Freebairn, Graves, Shenton, Carter, Rolls, Marr, d’après des compositions de Burney, Martin, Sharpe, Barrett, Landseer, Knight, Chishlome, Prout, Corbould, Purser, Stephanoff, Phillips, Westall et West.Charmant exemplaire bien conservé malgré quelques frottements et un coup aux coins supérieurs. Etui abîmé avec fond manquant.
(London, R. Ackermann), 1818, 12.1x17.8 cm, orig. kolorierte Aquatinta / Aquatinte coloriée, 1 feuille.
Curieusement l’édition de Ackermann mentionnée par Mandach est datée 1820 (comme notre exemplaire (ref.: 86747), la planche offerte ici est datée ‘1818’, en plus les couleurs sont différentes. Mandach, Lory N° 180. Image disp.
Phone number : 41 (0)26 3223808
Berlin, Julius Springer, 1928. 8vo. Publisher's full cloth. Ink signature of Samuel Skulsky on front free end paper. Completely clean throughout. A fine and tight copy.
First edition of the foundation of modern mathematical logic.In the years 1917-22 Hilbert gave three seminal courses at the Univeristy og Göttingen on logic and the foundation of mathematics. He received considerable help in preperation and eventual write up of these lectures from Bernays. This material was subsequently reworked by Ackermann into the monograph 'Grundzüge der Theoretischen Logik' (the offered item). It containes the first exposition ever of first-order logic and poses the problem of its completeness and the decision problem ('Entscheidungsproblem'). The first of these questions was answered just a year later by Kurt Gödel in his doctorial dissertation 'Die Vollständigkeit der Axiome des logischen Funktionenkalküls'. This result is known as Gödel's completeness theorem. Two years later Gödel published his famous 1931 paper 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I' in which he showed that a stronger logic, capable of modeling arithmetic, is either incomplete or inconsistent (Gödel's second incompleteness theorem). The later question posed by Hilbert and Ackermann regarding the decision problem was answered in 1936 independantly by Alonzo Church and Allan Turing. Church used his model the lambda-calculus and Turing his machine model to construct undecidable problems and show that the decision problem is unsolvable in first-order logic. These results by Gödel, Church, and Turing rank amongst the most important contributions to mathematical logic ever. Scarce in this condition.
HILBERT, D. UND W. ACKERMANN. - THE FOUNDATION OF MODERN MATHEMATICAL LOGIC.
Reference : 46101
(1928)
Berlin, Springer, 1928. Orig. full cloth. Lower part of spine with loss of cloth. Lower right cornerof titlepage cut away, no loss of letters. VIII,120 pp.
First edition. (Die Grundlehren der Mathematischen Wissenshaften in Einzeldarstellungen, Band XXVII). In the years 1917-22 Hilbert gave three seminal courses at the Univeristy og Göttingen on logic and the foundation of mathematics. He received considerable help in preperation and eventual write up of these lectures from Bernays. This material was subsequently reworked by Ackermann into the monograph 'Grundzüge der Theoretischen Logik' (the offered item). It containes the first exposition ever of first-order logic and poses the problem of its completeness and the decision problem ('Entscheidungsproblem'). The first of these questions was answered just a year later by Kurt Gödel in his doctorial dissertation 'Die Vollständigkeit der Axiome des logischen Funktionenkalküls'. This result is known as Gödel's completeness theorem. Two years later Gödel published his famous 1931 paper 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I' in which he showed that a stronger logic, capable of modeling arithmetic, is either incomplete or inconsistent (Gödel's second incompleteness theorem). The later question posed by Hilbert and Ackermann regarding the decision problem was answered in 1936 independantly by Alonzo Church and Allan Turing. Church used his model the lambda-calculus and Turing his machine model to construct undecidable problems and show that the decision problem is unsolvable in first-order logic. These results by Gödel, Church, and Turing rank amongst the most important contributions to mathematical logic ever.
HILBERT, D. UND W. ACKERMANN. - THE FOUNDATION OF MODERN MATHEMATICAL LOGIC.
Reference : 49908
(1928)
Berlin, Springer, 1928. 8vo. Uncut in orig. printed wrappers. VIII,120. With the name of Bent Schultzer (Former Danish professor in philosophy) on first leaf. Internally clean.
First edition. (Die Grundlehren der Mathematischen Wissenshaften in Einzeldarstellungen, Band XXVII). In the years 1917-22 Hilbert gave three seminal courses at the Univeristy og Göttingen on logic and the foundation of mathematics. He received considerable help in preperation and eventual write up of these lectures from Bernays. This material was subsequently reworked by Ackermann into the monograph 'Grundzüge der Theoretischen Logik' (the offered item). It containes the first exposition ever of first-order logic and poses the problem of its completeness and the decision problem ('Entscheidungsproblem'). The first of these questions was answered just a year later by Kurt Gödel in his doctorial dissertation 'Die Vollständigkeit der Axiome des logischen Funktionenkalküls'. This result is known as Gödel's completeness theorem. Two years later Gödel published his famous 1931 paper 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I' in which he showed that a stronger logic, capable of modeling arithmetic, is either incomplete or inconsistent (Gödel's second incompleteness theorem). The later question posed by Hilbert and Ackermann regarding the decision problem was answered in 1936 independantly by Alonzo Church and Allan Turing. Church used his model the lambda-calculus and Turing his machine model to construct undecidable problems and show that the decision problem is unsolvable in first-order logic. These results by Gödel, Church, and Turing rank amongst the most important contributions to mathematical logic ever.