McGraw-Hill 1973 in4. 1973. reliure d'éditeur.
Reference : 2147507399
Très bon état
Fraguas Margaux
Mme Margaux Fraguas
23 rue Armand Izarn
66100 Perpignan
France
06 12 21 42 25
Colissimo France : 7 euros International : Livre et brochure 6 euros
Cherry, John: Richard Rawlinson and his Seal Matrices. Collecting in the Early Eighteenth Century. 2016. 192 pages; colour illustrations. Hardback. 23 x 29cms. The Rawlinson collection of seal matrices in the University of Oxford was created by Richard Rawlinson in the first half of the eighteenth century and it includes 830 matrices from the 13th to the 18th Century. Although the majority of the matrices are Italian, and were acquired by Rawlinson from Giovanni Andrea Lorenzani, the collection also includes examples from England, Wales, Scotland, Ireland, Germany, Spain and Scandinavia. The publication describes and illustrates in details one hundred seals, providing important documentation previously unpublished.
The Rawlinson collection of seal matrices in the University of Oxford was created by Richard Rawlinson in the first half of the eighteenth century and it includes 830 matrices from the 13th to the 18th Century. Although the majority of the matrices are Italian, and were acquired by Rawlinson from Giovanni Andrea Lorenzani, the collection also includes examples from England, Wales, Scotland, Ireland, Germany, Spain and Scandinavia. The publication describes and illustrates in details one hundred seals, providing important documentation previously unpublished. Text in English
"CAYLEY, ARTHUR. - THE CAYLEY-HAMILTON THEOREM ANNOUNCED - THE MATHEMATICS OF QUANTUM MECHANICS.
Reference : 42295
(1858)
(London, Richard Taylor and William Francis, 1858 and Taylor and Francis, 1866. 4to. No wrappers as extracted from ""Philosophical Transactions"" Vol. 148 - Part I. Pp. 17-37, and Vol. 156 - Part I, Pp. 25-35. Clean and fine.
First appearance of this outstanding contribution to mathematics, announcing his invention and developments of the ALGEBRA OF MATRICES, what is now called the Cayley-Hamilton theorem for square matrices of any order. ""The subject originated in a memoir of 1858 (the paper offered) and grew directly out of simple observations on the way in which the transformations (linear) of the theory of algebraic invariants are combined...a distinctive feature of these rules is that multiplication is not commutative...we get different results according to the order in which we do the multiplication... (it) seems about as far from anything of scientific or practical use as anything could possible be. Yet sixty seven years after Cayley's invented it, HEISENBERG in 1925 recognized in the algebra of matrices exactly the tool which he neede for his revolutionary work in QUANTUM MECHANICS.""(Bell, Men of Mathematics).""It was in connection with the study of invariants under linear transformation that Cayley first introduced matrices to simplify the notation involved. Here he gave some basic notions. This was followed by his first major paper on the subject ""A Memoir on the Theory of Matrices."", the paper offered here. (Kline, Mathematical Thought...p. 806).
Gauthier-Villars , Cahiers Scientifiques Malicorne sur Sarthe, 72, Pays de la Loire, France 1958 Book condition, Etat : Bon broché, sous couverture imprimée éditeur grand In-8 1 vol. - 226 pages
3eme édition revue et corrigée, 1958 Contents, Chapitres : Tome 1 (1958), préface, vi, Texte, 220 pages - Tome 1. Aperçu historique (Généralités - Premières et deuxième méthodes de Hilbert - La géométrie de l'espace de Hilbert) - Rappels de quelques résultats obtenus concernant la résolution et la discussion des systèmesn d'équations linéaires par la méthode des déterminants - Notions élémentaires de géométrie linéaire homogène - Résolution et discussion d'un système d'équations linéaires sans déterminants - Développements de géométrie affine, calcul des matrices, Transformation des matrices, équivalence dans le groupe linéaire homogène, Notions sur les formes canoniques ou réduites de matrices, Notions sur le spectre, Forme bilinéaire associée à une matrice, Espace dual - La métrique dans l'espace vectoriel à n dimensions - Quelques applications immédiates et utiles de ces notions de métrique, Opérateurs et matrices remarquables dans l'espace métrique, formes canoniques dans le groupe unitaire - Etude particulière des matrices et des opérateurs hermitiens - Valeur d'une forme associée à un opérateur, Lien avec la réduction canonique d'une forme hermitienne - Equations intégrales de Fredholm et noyaux dégénérés, noyaux de Goursat - Gaston Maurice Julia, né le 3 février 1893 à Sidi-bel-Abbès (Algérie) et mort le 19 mars 1978 à Paris, est un mathématicien français, spécialiste des fonctions d'une variable complexe. Ses résultats de 1917-1918 sur l'itération des fractions rationnelles (obtenus simultanément par Pierre Fatou) ont été remis en lumière dans les années 1970 par le mathématicien français d'origine polonaise Benoît Mandelbrot. Les ensembles de Julia et de Mandelbrot sont étroitement associés. (source : Wikipedia) bords des plats à peine jaunis, petit manque angulaire au coin inférieur droit du plat supérieur, infime trace de pliure au coin inférieur gauche du plat inférieur, la couverture reste en bon état général, intérieur sinon frais et propre, papier à peine jauni, les coins inférieur droits des pages sont à peine cornés sans gravité, en début et fin d'ouvrage, cela reste un bon exemplaire du tome 1 seul de cette série de Gaston Julia, dans sa 3eme édition de 1858, la plus complète à notre connaissance, il manque le tome 2, mais ce volume est complet en lui-même
Berlin, Julius Springer, 1927. 8vo. Entire volume 45 of ""Zeitschrift für Physik"" bound in a red-brown contemporary half cloth with gilt title to spine. Library stamp to title-page. Corners and lower capital bumped, hinges a bit weak. An overall fine and clean copy. Pp. 751-765"" 766-775. [Entire volume: VII, (1), 910 pp.].
First publication of Jordan and Klein's influential paper (the first mentioned) which contributed to the close connection between quantum fields and quantum statistics, today known as Jordan-Klein matrices. ""Born, Heisenberg, and Jordan had indicated, and Dirac had demonstrated, the close connection between quantum fields and quantum statistics. Second quantization guarantees that photons obey Bose-Einstein statistics. What about other particles which obey Bose-Einstein statistics? The year 1927 was not over before Jordan and Klein addressed this question [in the present paper]."" (Pais, Inward bound. p. 338).Jordan and Klein found that ""one can quantize just as well the non-relativistic Schroedinger equation. In honor of these contributions the matrices have been named Jordan-Klein matrices."" (ibid. p. 339). The second paper, ""Über Wellen und Korpuskeln in der Quantenmechanik"", ""contained several other formal and mathematical generalizations, but its main practical value is that, in the newly established theory of the 'quantized wave field', the fluctuations in the Bose case now satisfied all requirements following from Einstein's light-quantum treatment of 1924 and 1925."" (Mehra, The historical development of quantum theory, 2000, p. 231.
Berlin, Julius Springer, 1927. 8vo. Entire volume 45 of ""Zeitschrift für Physik"" bound in a black contemporary half cloth with gilt lettering to spine. Library stamp to free front end-paper. An overall fine and clean copy. Pp. 751-765"" 766-775. [Entire volume: VII, (1), 910 pp.].
First publication of Jordan and Klein's influential paper (the first mentioned) which contributed to the close connection between quantum fields and quantum statistics, today known as Jordan-Klein matrices. ""Born, Heisenberg, and Jordan had indicated, and Dirac had demonstrated, the close connection between quantum fields and quantum statistics. Second quantization guarantees that photons obey Bose-Einstein statistics. What about other particles which obey Bose-Einstein statistics? The year 1927 was not over before Jordan and Klein addressed this question [in the present paper]."" (Pais, Inward bound. p. 338).Jordan and Klein found that ""one can quantize just as well the non-relativistic Schroedinger equation. In honor of these contributions the matrices have been named Jordan-Klein matrices."" (Ibid. p. 339). The second paper, ""Über Wellen und Korpuskeln in der Quantenmechanik"", ""contained several other formal and mathematical generalizations, but its main practical value is that, in the newly established theory of the 'quantized wave field', the fluctuations in the Bose case now satisfied all requirements following from Einstein's light-quantum treatment of 1924 and 1925."" (Mehra, The historical development of quantum theory, 2000, p. 231.