Bielo (3/2025)
Reference : SVALIVCN-9789464990751
LIVRE A L’ETAT DE NEUF. EXPEDIE SOUS 3 JOURS OUVRES. NUMERO DE SUIVI COMMUNIQUE AVANT ENVOI, EMBALLAGE RENFORCE. EAN:9789464990751
Bookit!
M. Alexandre Bachmann
Passage du Rond Point 4
1205 Genève
Switzerland
Virement bancaire, PayPal, TWINT!
Ienae Sumtib. Theod. Wilh. Ernst Güth 1750 608 pages in-12. 1750. relié. 608 pages. In-12 (178x104 mm) 608 pages + planches + index. Livre relié Plein veau Dos à cinq nerfs orné de caissons dorés avec pièce de titre Tranches rouges. Methodo mathematica in usum auditorii conscripta cum figuris aeneis atque indice. Editio quarta. Texte en latin. Complet des 19 planches en noir dépliantes. Reliure en bon état légèrement frottée avec un coin émoussé. Intérieur avec rousseurs et brunissures. Poids : 510 gr
Cambridge, 1910. Royal 8vo. In a recent half calf with four raised bands and green leather title-label with gilt lettering to spine. Repair to half title, not affecting text. Title-page with repair to outer margin, not affecting text. Previous-owner's name on whilte paper label pasted on to verso of title-page, not affecting text. Errata-leaf with repairs to lower margin. Otherwise, fine and clean. XIII, (3), 666 pp.
The seminal first edition of the first volume of the landmark work that founded modern mathematical logic and came to define research in the foundations of mathematics throughout the 20th century. ""Principia Mathematica"" proved to be remarkably influential in at least three ways. First, it popularized modern mathematical logic to an extent undreamt of by its authors. By using a notation superior to that used by Frege, Whitehead and Russell managed to convey the remarkable expressive power of modern predicate logic in a way that previous writers had been unable to achieve. Second, by exhibiting so clearly the deductive power of the new logic, Whitehead and Russell were able to show how powerful the idea of a modern formal system could be, thus opening up new work in what soon was to be called metalogic. Third, Principia Mathematica re-affirmed clear and interesting connections between logicism and two of the main branches of traditional philosophy, namely metaphysics and epistemology, thereby initiating new and interesting work in both of these areas.As a result, not only did Principia introduce a wide range of philosophically rich notions (including propositional function, logical construction, and type theory), it also set the stage for the discovery of crucial metatheoretic results (including those of Kurt Gödel, Alonzo Church, Alan Turing and others). Just as importantly, it initiated a tradition of common technical work in fields as diverse as philosophy, mathematics, linguistics, economics and computer science."" (SEP)""""Principia Mathematica"", the landmark work in formal logic written by Alfred North Whitehead and Bertrand Russell, was first published in three volumes in 1910, 1912 and 1913. A second edition appeared in 1925 (Volume 1) and 1927 (Volumes 2 and 3). In 1962 an abbreviated issue (containing only the first 56 chapters) appeared in paperback. In 2011 a digest of the book's main definitions and theorems, originally transcribed by Russell for Rudolf Carnap, was reprinted in The Evolution of Principia Mathematica, edited by Bernard Linsky.Written as a defense of logicism (the thesis that mathematics is in some significant sense reducible to logic), the book was instrumental in developing and popularizing modern mathematical logic. It also served as a major impetus for research in the foundations of mathematics throughout the twentieth century. Along with Aristotle's Organon and Gottlob Frege's Grundgesetze der Arithmetik, it remains one of the most influential books on logic ever written."" (SEP).
Reference : alb6dc28e74a3aa5531
Deacon B. Mathematica 5.6.7. Complete Guide In Russian /Dyakonov V. Mathematica 5.6.7. Polnoe rukovodstvo M. DMK Press 2011 624s. We have thousands of titles and often several copies of each title may be available. Please feel free to contact us for a detailed description of the copies available. SKUalb6dc28e74a3aa5531.
Berlin, Stockholm, Paris, F. & G. Beijer, 1884. 4to. In contemporary half cloth. Stamps to title-page and last leaf. In ""Acta Mathematica"", no 5, 1884/1885. Entire issue offered. Pp. 209-278. [Entire issue: (4) 408 pp.].
First publication of this groundbreaking paper which together with his three other papers on the pubject (not offered here) constitute the discovery of Automorphic Functions. ""Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the ""automorphic functions"" of one complex variable (or, as he called them, the ""fuchsian"" and ""kleinean"" functions)."" (DSB).These manuscripts, written between 28 June and 20 December 1880, show in detail how Poincaré exploited a series of insights to arrive at his first major contribution to mathematics: the discovery of the automorphic functions. In particular, the manuscripts corroborate Poincaré's introspective account of this discovery (1908), in which the real key to his discovery is given to be the recognition that the transformations he had used to define Fuchsian functions are identical with those of non-Euclidean geometry. (See Walter, Poincaré, Jules Henri French mathematician and scientist).The idea was to come in an indirect way from the work of his doctoral thesis on differential equations. His results applied only to restricted classes of functions and Poincaré wanted to generalize these results but, as a route towards this, he looked for a class functions where solutions did not exist. This led him to functions he named Fuchsian functions after Lazarus Fuchs but were later named automorphic functions. First editions and first publications of these epochmaking papers representing the discovery of ""automorphic functions"", or as Poincaré himself called them, the ""Fuchsian"" and ""Kleinian"" functions.""By 1884 Poincaré published five major papers on automorphic functions in the first five volumes of the new Acta Mathematica. When the first of these was published in the first volume of the new Acta Mathematica, Kronecker warned the editor, Mittag-Leffler, that this immature and obscure article would kill the journal. Guided by the theory of elliptic functions, Poincarë invented a new class of automorphic functions. This class was obtained by considering the inverse function of the ratio of two linear independent solutions of an equation. Thus this entire class of linear diffrential equations is solved by the use of these new transcendental functions of Poincaré."" (Morris Kline).Poincaré explains how he discovered the Automorphic Functions: ""For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions, I was then very ignorant" every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a Class of Fuchsian functions, those which come from hypergeometric series" i had only to write out the results, which took but a few hours...the transformations that I had used to define the Fuchsian functions were identical with those of Non-Euclidean geometry...""
Stockholm, Beijer, 1882-1902, in-4, 26 tomes en 22 volumes, 18 volumes demi-basane bleue et 4 volumes brochés, Très rare ensemble de la tête de collection de cette revue capitale, encore éditée aujourd'hui, fondée par le mathématicien Magnus Gustaf Mittag-Leffler (1846-1927), maître de conférence à l'université d'Uppsala en 1872, professeur à l'université d'Helsingfors (Finlande) en 1877 et à la faculté des sciences de Stockholm à partir de 1881. Certainement le plus prestigieux de tous les journaux consacrés à la recherche en mathématiques. Les Acta Mathematica se flattent de la contribution des plus grands mathématiciens de l'époque : Henri Poincaré, Sophie Kowalevski, Georg Cantor, Émile Picard, Paul Appell, Rudolf Lipschitz, Johan Jensen, David Hilbert, Émile Borel, Heinrich Martin Weber, etc... Ils contiennent entre autre le fameux travail d'Henri Poincaré sur la théorie du chaos, qu'il publia en remplacement de son mémoire initial sur la stabilité du système solaire. L'épisode relatif à ces 2 mémoires fait partie des temps forts de l'histoire de la revue : En 1889, Poincaré rédige un mémoire pour répondre au problème de savoir si les petites perturbations intrinsèques au mouvement des planètes pourraient, un jour, provoquer une collision entre elles ou bien si, comme l'avaient démontré Laplace, Lagrange et Gauss, le système solaire restera stable pendant au moins un million d'années. Le roi Oscar II de Suède lance un concours auquel répond le mathématicien français : en démontrant qu'un système très simple, formé de trois corps dont un de masse presque nulle, est un système stable, Poincaré obtient le prix du concours. Il est prévu que le mémoire soit publié dans les Acta Mathematica. L'article est imprimé, mais tout de suite après sa relecture, on constate une erreur fondamentale, qui non seulement invalide le raisonnement de l'auteur, mais plus encore, le conduit à une conclusion opposée : le système peut être instable. Poincaré dépense plus de la totalité de son prix à faire détruire les tirages et à faire réimprimer le numéro sans son article. Un an après, les Acta Mathematica publient son mémoire révisé, Sur le problème des trois corps et les équations de la dynamique, occupant la quasi intégralité du tome 13 (1890), qui fonde l'une des théories mathématiques les plus connues et les plus populaires, la théorie du chaos. Articles en allemand et en français. 2 portraits : Karl Weierstrass et Sophie Kowalevski Tables des matières aux tome 10 et 20. In fine au tome 11 : liste des 12 mémoires, anonymes, présentés au Prix Oscar II. Sans le portrait d'Abel annoncé au tome I. Volumes en demi-basane : dos épidermés et passés. Couvertures des volumes brochés fanées, dos muets refaits. Cachets annulé de l'Institut catholique de Paris et étiquettes en pied des dos. Couverture rigide
Bon 26 tomes en 22 volumes