‎Patricia Cornwell‎
‎Quantum‎

‎JC Lattès Sans date.‎

Reference : 500272016


‎Etat correct‎

€7.00 (€7.00 )
Bookseller's contact details

Démons et Merveilles
M. Christophe Ravignot

contact@demons-et-merveilles.com

07 54 32 44 40

Contact bookseller

Payment mode
Cheque
Transfer
Others
Sale conditions

Rapidité d'envoi Tous nos articles sont expédiés le jour même de la confirmation de la commande Soin de l'emballage Un soin particulier est apporté à l'emballage, vos objets voyagent en toute sécurité. A votre écoute Si toutefois un incident devait survenir lors de l'acheminement de votre paquet, n'hésitez pas à nous contacter, nous mettrons tout en oeuvre pour vous satisfaire, en vous proposant un retour, un remboursement ou toute autre soluton à votre convenance. Professionnalisme Les livres que nous vendons sont pour la plupart des livres anciens, nous tâchons d'être le plus objectif possible quant à leur état.

Contact bookseller about this book

Enter these characters to validate your form.
*
Send

5 book(s) with the same title

‎"BOHR, NIELS.‎

Reference : 46542

(1918)

‎On the Quantum Theory of Line-Spectra. Part I-II. [Off-print from ""D. Kgl. Danske Vidensk. Selsk. Skrifter"". - [BOHR'S CORRESPONDENCE PRINCIPLE - PRESENTATION-COPIES]‎

‎Copenhagen, Bianco Lunos, 1918. 4to. Both parts uncut and in the original printed wrappers. Wrappers detached and with small nicks and tears to extremities. Internally fine and clean. Part I unopened. 36 pp. + pp. (37) - 100.‎


‎First editions, author's off-prints (with ""Separate Copy"" printed to front wrappers), presentation-copies, of the first two parts of Bohr's seminal work ""On the Quantum Theory of the Line-Spectra"" (which appeared in three parts and which was never finished, the third part of which, published 4 years later, is almost never found in presentation-sets), in which Bohr gave his first clear presentation of his groundbreaking ""correspondence principle"": ""Which would play a pivotal role in the later development of atomic theory and its transformation into quantum mechanics."" (Kragh, Quantum Generations, p. 56). It eventually became a cornerstone in the quantum mechanics formulated by Heisenberg and Schrödinger. ""There was rarely in the history of physics a comprehensive theory which owed so much to one principle as quantum mechanics owed to Bohr's correspondence principle"" (Jammer 1966, p. 118). The evolution of quantum theory is divided into two distinct periods"" from 1900 to 1925, usually referred to as the period with the old quantum theory still grounded in classical physics and the second period with quantum mechanics from 1925 onwards. The general rules of quantum mechanics are very successful in describing objects on an atomic level. But macroscopic systems are accurately described by classical theories like classical mechanics and classical electrodynamics. If quantum mechanics were to be applicable to macroscopic objects, there must be some limit in which quantum mechanics reduces to classical mechanics. Bohr's correspondence principle demands that classical physics and quantum physics give the same answer when the systems become large. ""A major tool he developed for dealing with quantum problem, [...], was the correspondence principle, which establishes links between predictions of the classical theory and expectations for the quantum theory."" (Pais, Niels Bohr's Times, p. 20.). In this sense, the correspondence principle is not only an exceedingly important methodological principle, it also represents the transition to quantum mechanics and modern physics in general and it became the cornerstone of Bohr's philosophical interpretation of quantum mechanics which later would be closely tied to his thesis of complementarity and to the Copenhagen interpretation. Another version of the correspondence principle lives on in philosophical literature where it has taken form as a more general concept representing a development of new scientific theories.""By 1918 Bohr had visualized, at least in outline, the whole theory of atomic phenomena. ... He of course realized that he was still very far from a logically consistent framework wide enough to incorporate both the quantum postulates and those aspects of classical mechanics and electrodynamics that seemed to retain some validity. Nevertheless, he at once started writing up a synthetic exposition of his arguments and of all the evidence upon which they could have any bearing" in testing how well he could summarize what was known, he found occasion to check the soundness of his ideas and to improve their formulation. In the present case, however, he could hardly keep pace with the growth of the subject the paper he had in mind at the beginning developed into a four-part treatise, 'On the Theory of Line Spectra', publication of which dragged over four years without being completed" the first three parts appeared between 1918 and 1922 [of which the two first from 1918 are offered here], and the fourth, unfortunately, was never published. Thus, the full impact of Bohr's view remained confined to the small but brilliant circle of his disciples, who indeed managed better than their master to make them more widely known by the prompter publication of their own results"" (D.S.B. II: 246-47).Inscribed to ""Hr. Docent D. la Cour/ Venskabeligst/ fra/ Forfatteren"" on both front wrappers. The renowned Danish physicist and meteorologist Dan la Cour (1876-1942), was the son of the great Poul la Cour (1846-1908), who is considered the ""Danish Edison"". Dan la Cour was the assistant of Niels Bohr's father, Christian Bohr, and a well known scientist. From 1903, he was head of the department of the Meteorological Institute, and from 1923 leader thereof. From 1908 he was Associate Professor at the Polytechnic College. His original scientific works are highly respected, as are his original apparati for measuring earth magnetism which are considered highly valuable. ""His original intelligence, which in many ways resemble that of his father, also bore fruit in his patenting of various inventions: the ""Pyknoprobe"", developed to quickly determine the different layers of the sea"" a use of termite in quickly heating food and drinks out in the open under unfavourable weather conditions."" (From the Danish Encyclopaedia - own translation). He wrote a number of important and esteemed works and was member of the Danish Scientific Academy as well as many prominent international scientific commissions of meteorology and geophysics (i.e. president of the International Geodetical and Geophysical Union). He was also honorary Doctor at the George Washington University. Rosenfeld, Bohr-Bibliography, 15.‎

Logo ILAB

Phone number : +45 33 155 335

DKK54,000.00 (€7,242.59 )

‎"SCHRÖDINGER, ERWIN.‎

Reference : 47045

(1935)

‎Die gegenwärtige Situation in der Quantenmechanik I-III [All]. (The Present Situation in Quantum Mechanics). - [SCHRÖDINGER'S CAT]‎

‎Berlin, Springer, 1935. Royal8vo. Bound in recent half cloth with gilt lettering to spine. In ""Die Naturwissenschaften"", Vol 23, 1935. Minor wear to extremities, otherwise a very fine and clean copy. Pp. 807-812" Pp. 823-828" Pp. 844-849. [Entire volume: XIX, (1), 870, 8 pp.].‎


‎First edition and first announcement of Schrödinger's famous reply to the EPR-paradox, arguably the most celebrated and influential illustration of the paradoxes of quantum theory also known as Schrödinger's Cat. When in May 1935 Einstein, Podolsky and Rosen published the so-called EPR-paper in ""Physical Review"", they set out to demonstrate that the Copenhagen interpretation of quantum mechanics could not constitute a complete description of nature. The EPR-article prompted a number of responses, e.g. from Bohr, the co-founder of the Copenhagen School, who began writing his response immediately after the publication of the Physical Review article. It is this debate that Schrödinger participates in with his seminal paper on ""The Present Situation in Quantum Mechanics"", in which he presents what is now famously known as Schrödinger's Cat. Schrödinger's Cat is the name of the thought experiment that Schrödinger develops in this article and that was intended as a discussion of the EPR article.After the publication of the EPR article, Einstein and Schrödinger had begun an exchange of letters on the subject of the possibility of quantum mechanics, as interpreted by the Copenhagenists, representing reality. During this exchange of letters, Schrödinger had been inspired by Einstein's view of the problem of applying the Copenhagen interpretation of Quantum mechanics to everyday objects. But Schrödinger, in his response, took his illustration of the absurdity of the interpretation and the incompleteness of quantum mechanics a step further" he applied it to a living entity, namely a cat. Schrödinger imagines a sealed box containing a cat, a bottle of poison, a radioactive source, a Geiger counter and a hammer. When the Geiger counter detects radiation, a mechanism is switched on that makes the hammer fall the hammer breaks the bottle, and the poison kills the cat. Because it is random, when the Geiger counter will detect radiation, and because in Quantum mechanics, physical conditions are described with the aid of a wave-function that explains all possible conditions of the system, Quantum mechanics, according to the Copenhagen interpretation, would come to the conclusion that the cat in the box is both living and dead, at the same time (the wave function is made up of a superposition of the two conditions -the cat being living and the cat being dead-" the two positions collapse into one, as soon as the system is interpreted as consisting of only one condition -either dead or living cat-, with the sole possible conclusion that the cat is both). Due to Heisenberg and Bohr's independent interpretation of Quantum theory (the ""Copenhagen interpretation), Quantum theory had in 1927 developed in a direction unforeseen by Schrödinger. ""Schrödinger was ""concerned and disappointed"" that this ""transcendental, almost physical interpretation of the wave phenomena"" had become the ""almost universally accepted dogma."""" (D.S.B. XII, p. 221). His most famous and widely used attack on this interpretation was that of ""Schrödinger's Cat"". This paradox of the dead-and-alive cat vigorously illustrated the absurdity of quantum mechanics and what was necessary to describe the states within this system. The thought experiment of Schrödinger's cat turned out to be hugely influential, and has become a standard paradox within both physics and philosophy.‎

Logo ILAB

Phone number : +45 33 155 335

DKK15,000.00 (€2,011.83 )

‎"DIRAC, P.A.M. (PAUL ADRIEN MAURICE). - THE RADIATION THEORY, THE BIRTH OF QUANTUM ELECTRODYNAMICS‎

Reference : 47023

(1927)

‎The Quantum Theory of Emission and Absorption of Radiation. (+) The Quantum Theory of Dispersion. (2 Papers).‎

‎London, Harrison And Sons, Ltd., 1927. Royal8vo. Contemp. full cloth. A small stamp on verso of titlepage. In: ""Proceedings of the Royal Society of London"", Series A, Vol. 114. VI,IX,748 pp. (entire volume offered). Dirac's papers: pp. 243-265 a. pp. 710-728. Clean and fine.‎


‎First appearance of these milestone papers in Quantum Physics, constituting the first step in Quantum Field Theory and the invention of the Second Quantifization Method. By these papers Dirac ""gave the foundation for that theory, quantum electrodynamics""(Pais).""A New Radiation Theory. Dirac liked his transformation theory because it was the outcome of a planned line of research and not a fortuitous discovery. He forced his future investigations to fit it. The first results of this strategy were almost miraculous. First came his new radiation theory, in February 1927, which quantized for the first time James Clerk Maxwell’s radiation in interaction with atoms. Previous quantum-mechanical studies of radiation problems, except for Jordan’s unpopular attempt, retained purely classical fields. In late 1925 Jordan had applied Heisenberg’s rules of quantization to continuous free fields and obtained a light-quantum structure with the expected statistics (Bose Einstein) and dual fluctuation properties. Dirac further demonstrated that spontaneous emission and its characteristics—previously taken into account only by special postulates—followed from the interaction between atoms and the quantum field. Essential to this success was the fact that Dirac’s transformation theory eliminated from the interpretation of the quantum formalism every reference to classical emitted radiation, contrary to Heisenberg’s original point of view and also to Schrödinger’s concept of ? as a classical source of field.This work was done during Dirac’s visit to Copenhagen in the winter of 1927. Presumably to please Bohr, who insisted on wave-particle duality and equality, Dirac opposed the ""corpuscular point of view"" to the quantized electromagnetic ""wave point of view."" He started with a set of massless Bose particles described by symmetric ? waves in configuration space. As he discovered by’ playing with the equations, ’ this description was equivalent to a quantized Schrödinger equation in the space of one particle"" this’ second quantization’ was already known to Jordan, who during 1927 extended it into the basic modern quantum field representation of matter. Dirac limited his use of second quantization electromagnetic to radiation: to establish that the corpuscular point of view, once brought into this form, was equivalent to the wave point of view.""(DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK8,500.00 (€1,140.04 )

‎"BOHR, NIELS. & LÉON ROSENFELD. + LEV LANDAU & RUDOLF PEIERLS.‎

Reference : 35750

(1933)

‎[Three papers] 1. Zur Frage der Messbarkeit der elektomagnetischen Feldgrössen. + 2. Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie. + 3. Field and Charge Measurements in Quantum Electrodynamics. - [QUANTUM FIELD THEORY]‎

‎Copenhagen, Levin & Munksgaard, 1933. + Berlin, Springer 1931. + Lancaster, American Physical Society, 1950. First paper: Published as no. 8 of vol. 12 in 'Kgl. Dankse Vid. Selsk. Math.-Fys. Medd.'. 8vo. Original printed wrappers. With the ownership signature of Danish physicist Mogens Pihl (Prof. of physics at Copenhagen University 1957-77). 65,(1) pp. Second paper: Published in 'Zeitschrift für Physik', vol. 69, pp.56-69. The entire volume in contemporary half cloth offered here.Third paper: Published in 'The Physical Review', vol. 78, no. 6, pp.794-798. The entire issue in original printed wrappers offered here. With rubber stamp of Danish physicist Christian Møller (Author of ""The Theory of Relativity, 1952""). ‎


‎First editions of these fundamental papers in the development of quantum field theory. The process of measuring electromagnetic fields involves the observation of charged test bodies in those fields. Therefore the theory of electrodynamics is an inseparable extension of mechanics. A quantum theory of fields thus inherits, in some form, the limitations of measurement which lie at the foundation of quantum mechanics. In 1931 Landau and Peierls published a critical analysis of the consequences of such limitations in a relativistic quantum theory of fields (second paper offered). Landau and Peierls came to the negative conclusion that in several cases, the concept of momentum was without physical meaning and quantities such as the strength of a field was un-measurable. In their famous paper from 1933 Bohr and Rosenfeld (first paper offered) carefully reviewed the arguments of Landau and Peierls and showed, through the use of particular measuring arrangements, that a consistent quantum theory of fields is possible without further limitations than the ones which secure the consistency of quantum mechanics. The BR-paper is often credited with having laid the foundation for quantum electrodynamics. Bohr continued his work in this field, and in 1937 he completed a manuscript entitled ""Field and Charge Measurement in Quantum Theory"", but this was never published. When, in the late 1940s the important work on QED by Tomonaga, Schwinger, Dyson, and Feynman appeared in The Physical Review, Bohr and Rosenfeld again joined and published the essentials of the 1937 manuscript in the same journal (third paper offered).See Abraham Pais: Bohr's Times, pp.358-364. Mehra & Rechenberg: The Historical Development of Quantum Theory, vol. 6, pp.697-703. Collected Works of Niels Bohr, vol. 7, pp.3-33.‎

Logo ILAB

Phone number : +45 33 155 335

DKK8,000.00 (€1,072.98 )

‎SCHRÖDINGER, ERWIN.‎

Reference : 35855

(1935)

‎Die gegenwärtige Situation in der Quantenmechanik I-III [All]. (The Present Situation in Quantum Mechanics). - [SCHRÖDINGER'S CAT]‎

‎Springer, Berlin, 1935. 4to. (256x186mm). Pages 807-812 823-828" 844-849 from volume 23 of 'Die Naturwissenschaften'. Bound together in recent attractive marbled boards (Hanne Jensen). Leather title with gilt lettering on front board. A fine and clean copy.‎


‎First edition and first announcement of Schrödinger's famous reply to the EPR-paradox (also known as Schrödinger's Cat). When in May 1935 Einstein, Podolsky and Rosen published the so-called EPR-paper in ""Physical Review"", they set out to demonstrate that the Copenhagen interpretation of quantum mechanics could not constitute a complete description of nature. The EPR-article prompted a number of responses, e.g. from Bohr, the co-founder of the Copenhagen School, who began writing his response immediately after the publication of the Physical Review article. It is this debate that Schrödinger participates in with his seminal paper on ""The Present Situation in Quantum Mechanics"", in which he presents what is now famously known as Schrödinger's Cat. Schrödinger's Cat is the name of the thought experiment that Schrödinger develops in this article and that was intended as a discussion of the EPR article.After the publication of the EPR article, Einstein and Schrödinger had begun an exchange of letters on the subject of the possibility of quantum mechanics, as interpreted by the Copenhagenists, representing reality. During this exchange of letters, Schrödinger had been inspired by Einstein's view of the problem of applying the Copenhagen interpretation of Quantum mechanics to everyday objects. But Schrödinger, in his response, took his illustration of the absurdity of the interpretation and the incompleteness of quantum mechanics a step further" he applied it to a living entity, namely a cat. Schrödinger imagines a sealed box containing a cat, a bottle of poison, a radioactive source, a Geiger counter and a hammer. When the Geiger counter detects radiation, a mechanism is switched on that makes the hammer fall the hammer breaks the bottle, and the poison kills the cat. Because it is random, when the Geiger counter will detect radiation, and because in Quantum mechanics, physical conditions are described with the aid of a wave-function that explains all possible conditions of the system, Quantum mechanics, according to the Copenhagen interpretation, would come to the conclusion that the cat in the box is both living and dead, at the same time (the wave function is made up of a superposition of the two conditions -the cat being living and the cat being dead-" the two positions collapse into one, as soon as the system is interpreted as consisting of only one condition -either dead or living cat-, with the sole possible conclusion that the cat is both). Due to Heisenberg and Bohr's independent interpretation of Quantum theory (the ""Copenhagen interpretation), Quantum theory had in 1927 developed in a direction unforeseen by Schrödinger. ""Schrödinger was ""concerned and disappointed"" that this ""transcendental, almost physical interpretation of the wave phenomena"" had become the ""almost universally accepted dogma."""" (D.S.B. XII, p. 221). His most famous and widely used attack on this interpretation was that of ""Schrödinger's Cat"". This paradox of the dead-and-alive cat vigorously illustrated the absurdity of quantum mechanics and what was necessary to describe the states within this system. The thought experiment of Schrödinger's cat turned out to be hugely influential, and has become a standard paradox within both physics and philosophy.‎

Logo ILAB

Phone number : +45 33 155 335

DKK15,000.00 (€2,011.83 )
Get it on Google Play Get it on AppStore
The item was added to your cart
You have just added :

-

There are/is 0 item(s) in your cart.
Total : €0.00
(without shipping fees)
What can I do with a user account ?

What can I do with a user account ?

  • All your searches are memorised in your history which allows you to find and redo anterior searches.
  • You may manage a list of your favourite, regular searches.
  • Your preferences (language, search parameters, etc.) are memorised.
  • You may send your search results on your e-mail address without having to fill in each time you need it.
  • Get in touch with booksellers, order books and see previous orders.
  • Publish Events related to books.

And much more that you will discover browsing Livre Rare Book !