Sort by

‎Historical Studies in the Physical and Biological Sciences - Seiya Abiko - Matthias Dörries - J.L. Heilbron - Robert E. Kohler - Aleksei Kozhevnikov on Piotr Kapitza - M. de Maria, M.G. Ianniello, A. Russo ‎

Reference : 100915

(1991)

‎Historical Studies in the Physical and Biological Sciences - Volume 22, Part 1 (1991) , (On the chemico-thermal origins of special relativity - Prior history and aftereffects : Hysteresis and Nachwirkung in 19th-century physics - The contributions of Bologna to Galvanism - Systems of production : Drosophila, Neurospora, and biochemical genetics - Piotr Kapitza and Stalin's government : A study in moral choice - The discovery of cosmic rays : Rivalries and controversies between Europe and the United States)‎

‎University of California Press, History of Science and Technology , Historical Studies in the Physical and Biological Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1991 Book condition, Etat : Bon paperback, editor's white wrappers, title in blue grand In-8 1 vol. - 205 pages‎


‎few black and white illustrations and text-figures 1st edition, 1991 Contents, Chapitres : Seiya Abiko : On the chemico-thermal origins of special relativity - Matthias Dörries : Prior history and aftereffects : Hysteresis and Nachwirkung in 19th-century physics - J.L. Heilbron : The contributions of Bologna to Galvanism - Robert E. Kohler : Systems of production : Drosophila, Neurospora, and biochemical genetics - Aleksei Kozhevnikov : Piotr Kapitza and Stalin's government : A study in moral choice - M. de Maria, M.G. Ianniello, A. Russo : The discovery of cosmic rays : Rivalries and controversies between Europe and the United States plastified wrappers, transparent, else near fine, no markings - pages 1 to 205‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR15.00 (€15.00 )

‎"KAPITZA, P (+) J. F. ALLEN (+) A. D. MISENE‎

Reference : 59910

(1938)

‎Viscosity of liquid Helium below the lambda-point [Kapitza] (+) Flow of liquid Helium II [J. F. Allen & A. D. Misener] [The volume also contain the following papers: New phenomena connected with heat flow in liquid Helium II [J. F. Allen & H. Jones] (... - [THE DISCOVERY OF SUPERFLUIDITY]‎

‎London, Macmillian and Co, 1938. Royal8vo. In contemporary half cloth with white paper title-label pasted on to spine. In: ""Nature"", January - June, 1939, Vol. 141, entire volume offered. Stamp to front free end-paper and title-page, otherwise fine and clean copy. P. 74"" P. 75. [Entire volume: LXIV, 1156 pp.]. ‎


‎First publication of these two seminal papers which constitutes one of the most significant discoveries in 20th century physics. It ushered a golden period of low-temperature physics and created a new research field within physics which was later to be called quantum liquids. Both paper described a hitherto unknown state of matter: superfluidity of matter. The two discoveries were made independently, Kapitza's paper superseding Allen and Misener's by two weeks. Both studies reported that liquid helium flowed with almost no measurable viscosity below the transition temperature of 2.18 K.""Although the discovery of superfluidity stands as one of the most significant in physics in the 20th century, it was to be 40 years before the Royal Swedish Academy of Sciences honoured this seminal discovery with a Nobel prize - an exceptionally long interval. In 1978 Kapitza, by then 84, was given half of that year's Nobel Prize for Physics with a somewhat vague citation reading ""for his basic inventions and discoveries in the area of low-temperature physics"". The other half did not go to Allen and Misener. Today, science popularizers generally give sole credit for the discovery of superfluidity to Kapitza."" (Physics world, University of Toronto.). ""Kapitza observed that He II flowed between two closely spaced parallel plates extremely rapidly compared to He I, for the same pressure difference. This result, published in Nature on 8 January 1938, showed unambiguously that here was a new and mysterious kind of liquid - one with almost no viscosity. On the page facing Kapitza's one-page paper was another by the young Canadian physicists Jack Allen and Donald Misener, with essentially equivalent results on helium flow on long capillary tubes. It was submitted two weeks after Kapitza's, but both papers are the standard reference for the discovery of superfluidity"". (Griffin, A Century of Nature, 2003, p. 52).While investigating the thermal conductivity of liquid helium, Kapitsa measured the flow as the fluid flows through a gap between two discs into a surrounding bath. Above the lambda point, there was little flow, but below the lambda temperature, the liquid flowed with such great ease that Kapitsa drew an analogy with superconductors. It was a liquid of zero viscosity. He discovered the phenomenon in 1937 and published a paper about it in Nature in January 1938. He wrote: ""The helium below the lambda point enters a special state that might be called a ‘superfluid.’"" (DSB).Today the theory behind superfluidity is widely used within a broad variety of different subject such as spectroscopic and in high-precision devices as gyroscopes which allow the measurement of some theoretically predicted gravitational effects. In 1999, a type of superfluid was used to trap light and greatly reduce its speed. Light was passed through a Bose-Einstein condensed gas of sodium (superfluid) and found to be slowed to 17 m/s from its normal speed of 299,792,458 metres per second.Brandt, The Harvest of a Century, Pp. 254-7.‎

Logo ILAB

Phone number : +45 33 155 335

DKK4,500.00 (€603.55 )

‎"KAPITZA, P (+) J. F. ALLEN (+) A. D. MISENER.‎

Reference : 46897

(1938)

‎Viscosity of liquid Helium below the lambda-point [Kapitza] (+) Flow of liquid Helium II [J. F. Allen & A. D. Misener] [The volume also contain the following papers: New phenomena connected with heat flow in liquid Helium II [J. F. Allen & H. Jones] (... - [THE DISCOVERY OF SUPERFLUIDITY]‎

‎New York, Macmillian and Co, 1938. Royal8vo. In publisher's pictorial cloth with the original wrappers [in the back]. Gilt lettering and Nature's logo to spine and front board. Entire issue of ""Nature"", January - June, 1938, Vol. 141. ""Emmanuel College"" in gilt lettering to spine and two library stamps to title-page and first index page. Two small white paper labels pasted on to spine and a small tear to top of spine. Very slight wear to extremities, otherwise a very fine and clean copy. Rare in the publisher's binding. P. 74"" P. 75. [Entire volume: LXIV, 1156 + VIII, IV, VIII, VIII, XVI, VIII, VIII, XVI, VIII, XII, VIII, XII, XII, IV, IV, VIII, XII, VIII, VIII, VIII, VIII, XII, VIII, IV, XVI, CCLX (Advertisements).‎


‎First publication of these two seminal papers which constitutes one of the most significant discovery in 20th century physics. It ushered a golden period of low-temperature physics and created a new research field within physics which was later to be called quantum liquids. Both paper described a hitherto unknown state of matter: superfluidity of matter. The two discoveries were made independently, Kapitza's paper superseding Allen and Misener's by two weeks. Both studies reported that liquid helium flowed with almost no measurable viscosity below the transition temperature of 2.18 K.""Although the discovery of superfluidity stands as one of the most significant in physics in the 20th century, it was to be 40 years before the Royal Swedish Academy of Sciences honoured this seminal discovery with a Nobel prize - an exceptionally long interval. In 1978 Kapitza, by then 84, was given half of that year's Nobel Prize for Physics with a somewhat vague citation reading ""for his basic inventions and discoveries in the area of low-temperature physics"". The other half did not go to Allen and Misener. Today, science popularizers generally give sole credit for the discovery of superfluidity to Kapitza."" (Physics world, University of Toronto.). ""Kapitza observed that He II flowed between two closely spaced parallel plates extremely rapidly compared to He I, for the same pressure difference. This result, published in Nature on 8 January 1938, showed unambiguously that here was a new and mysterious kind of liquid - one with almost no viscosity. On the page facing Kapitza's one-page paper was another by the young Canadian physicists Jack Allen and Donald Misener, with essentially equivalent results on helium flow on long capillary tubes. It was submitted two weeks after Kapitza's, but both papers are the standard reference for the discovery of superfluidity"". (Griffin, A Century of Nature, 2003, p. 52).While investigating the thermal conductivity of liquid helium, Kapitsa measured the flow as the fluid flows through a gap between two discs into a surrounding bath. Above the lambda point, there was little flow, but below the lambda temperature, the liquid flowed with such great ease that Kapitsa drew an analogy with superconductors. It was a liquid of zero viscosity. He discovered the phenomenon in 1937 and published a paper about it in Nature in January 1938. He wrote: ""The helium below the lambda point enters a special state that might be called a ‘superfluid.’"" (DSB).Today the theory behind superfluidity is widely used within a broad variety of different subject such as spectroscopic and in high-precision devices as gyroscopes which allow the measurement of some theoretically predicted gravitational effects. In 1999, a type of superfluid was used to trap light and greatly reduce its speed. Light was passed through a Bose-Einstein condensed gas of sodium (superfluid) and found to be slowed to 17 m/s from its normal speed of 299,792,458 metres per second.Brandt, The Harvest of a Century, Pp. 254-7.‎

Logo ILAB

Phone number : +45 33 155 335

DKK7,000.00 (€938.85 )

‎KAPITZA, P. (+) J. F. ALLEN (+) A. D. MISENER.‎

Reference : 43836

(1938)

‎Viscosity of Liquid Helium below the l-Point [Kapitza] (+) Flow of Liquid Helium II [Allen & Misener]. - [THE DISCOVERY OF SUPERFLUIDITY]‎

‎New York, Macmillian and Co, 1938. Lex8vo. Entire volume 141 of Nature offered. Bound in a brown contemporary full cloth with gilt lettering to spine. Ex-library copy, paper label pasted on to top and bottom of spine. Library stamp to pasted down front free end-paper and title page. Paper labels pasted on the back free end-paper and pasted down back free end-paper. Internally fine and clean. P. 74" 75. [Entire volume: Pp. lxiv, 1156, v-xii, v-vii, v-iv, v-xii].‎


‎First publication of these two seminal papers which constitutes one of the most significant discovery in 20th century physics. It ushered a golden period of low-temperature physics and created a new research field within physics which was later to be called quantum liquids. Both paper described a hitherto unknown state of matter: superfluidity of matter. The two discoveries were made independently, Kapitza's paper superseding Allen and Misener's by two weeks. Both studies reported that liquid helium flowed with almost no measurable viscosity below the transition temperature of 2.18 K.""Although the discovery of superfluidity stands as one of the most significant in physics in the 20th century, it was to be 40 years before the Royal Swedish Academy of Sciences honoured this seminal discovery with a Nobel prize - an exceptionally long interval. In 1978 Kapitza, by then 84, was given half of that year's Nobel Prize for Physics with a somewhat vague citation reading ""for his basic inventions and discoveries in the area of low-temperature physics"". The other half did not go to Allen and Misener. Today, science popularizers generally give sole credit for the discovery of superfluidity to Kapitza."" (Physics world, University of Toronto.). ""Kapitza observed that He II flowed between two closely spaced parallel plates extremely rapidly compared to He I, for the same pressure difference. This result, published in Nature on 8 January 1938, showed unambiguously that here was a new and mysterious kind of liquid - one with almost no viscosity. On the page facing Kapitza's one-page paper was another by the young Canadian physicists Jack Allen and Donald Misener, with essentially equivalent results on helium flow on long capillary tubes. It was submitted two weeks after Kapitza's, but both papers are the standard reference for the discovery of superfluidity"". (Griffin, A Century of Nature, 2003, p. 52).Today the theory behind superfluidity is widely used within a broad variety of different subject such as spectroscopic and in high-precision devices as gyroscopes which allow the measurement of some theoretically predicted gravitational effects. In 1999, a type of superfluid was used to trap light and greatly reduce its speed. Light was passed through a Bose-Einstein condensed gas of sodium (superfluid) and found to be slowed to 17 m/s from its normal speed of 299,792,458 metres per second.Brandt, The Harvest of a Century, Pp. 254-7.‎

Logo ILAB

Phone number : +45 33 155 335

DKK3,500.00 (€469.43 )
Get it on Google Play Get it on AppStore
Kapitza
The item was added to your cart
You have just added :

-

There are/is 0 item(s) in your cart.
Total : €0.00
(without shipping fees)
What can I do with a user account ?

What can I do with a user account ?

  • All your searches are memorised in your history which allows you to find and redo anterior searches.
  • You may manage a list of your favourite, regular searches.
  • Your preferences (language, search parameters, etc.) are memorised.
  • You may send your search results on your e-mail address without having to fill in each time you need it.
  • Get in touch with booksellers, order books and see previous orders.
  • Publish Events related to books.

And much more that you will discover browsing Livre Rare Book !