NATHAN. 1994. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 128 pages. Premier plat illustré en couleurs. Quelques illustrations et schémas en noir et vert.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Pour toute l'année... des tests d'évaluation, l'essentiel du cours, la méthode et les conseils pou résoudre des exercices types, de nombreux exercices d'entraînement. Classification Dewey : 372.7-Livre scolaire : mathématiques
FERNAND NATHAN. 1977. In-16. Relié. Etat d'usage, Couv. légèrement passée, Dos fané, Intérieur frais. 221 pages. Quelques schémas en noir et blanc dans le texte. Relié par une spirale en plastique blanc.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Casterman. 1970. In-12. Broché. Bon état, Couv. légèrement passée, Dos plié, Intérieur frais. 156 pages illustrées de nombreux dessins schématiques.. . . . Classification Dewey : 510-Mathématiques
Collection Poche: Enfance -éducation-enseignement. Classification Dewey : 510-Mathématiques
NATHAN / ABC BAC. 2002. In-12. Broché. Etat d'usage, Couv. légèrement passée, Dos plié, Intérieur frais. 279 pages. Premier plat illustré en couleurs.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Tous les sujets du bac 2002 adaptés au nouveau programme. Des sujets inédits, des sujets de concours, et plus de 260 exercices supplémentaires. Un index thématique et des conseils de méthode. Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Cornet, Béatrice Filippi, Emilie Gamblin
Reference : RO20267037
(2019)
ISBN : 2091653721
NATHAN TECHNIQUE. 2019. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 255 pages - couverture rempliée. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Cornet, Béatrice Filippi, Emilie Gamblin, Caroline Lecouflet, Jean Berky Nguala, Claude Perchet, Fabrice Richard, Laurent Gilbert, Nicolas Krzewina Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Faux, Erik Dernoncourt, Cédric Meurisse
Reference : RO40038127
(2001)
ISBN : 2011161800
ISTRA. 2001. In-4. Relié. Etat d'usage, Couv. légèrement pliée, Dos satisfaisant, Intérieur frais. 191 pages illustrées en couleur. Couverture légèrement passée.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Faux, Erik Dernoncourt, Cédric Meurisse, Jean Hanry. Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Ferrero, Isabelle DARO, Marie-Claire ...
Reference : RO20268111
(2014)
ISBN : 2011201020
HACHETTE EDUCATION. 2014. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 304 pages illustrées en couleur. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Ferrero, Isabelle DARO, Marie-Claire Cipolin, Sébastien Cuq, Stéphane Poupas, Benoit Ripaud, Roger Brault Classification Dewey : 372.7-Livre scolaire : mathématiques
Christine Ferrero, Marie-Claire Cipolin, Cuq ....
Reference : RO20268176
(2014)
ISBN : 2011201187
"HACHETTE EDUCATION. 2014. In-4. Broché. Etat d'usage, Couv. convenable, Dos satisfaisant, Intérieur frais. 289 PAGES illustrées en couleur + 1 "" Livret d'accompagnement "" de XVIII pages. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques"
Christine Ferrero, Marie-Claire Cipolin, Isabelle DARO, Benoit Ripaud, Sébastien Cuq, Isabelle Marfaing, Roger Brault Classification Dewey : 372.7-Livre scolaire : mathématiques
Berlin, G. Reimer, 1858. 4to. As extracted from ""Journal für die reine und angewandte Mathematik, 55. Band, 1858""., without backstrip. Fine and clean. [Christoffel:] Pp. 61-82.
First printing.
Pairs, Dunod 1999, 240x170mm, VI - 247pages, broché. Bel exemplaire.
Pour un paiement via PayPal, veuillez nous en faire la demande et nous vous enverrons une facture PayPal
Christophe Barnet, Agnès Villattes, Helena Berger
Reference : RO20268109
(2016)
ISBN : 201395364X
HACHETTE EDUCATION. 2016. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 304 PAGES ilustrées en couleur. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Christophe Barnet, Agnès Villattes, Helena Berger, Sandrine Pollet, Benoît Lafargue, Nadine Billa, Marie-Christine Layan, Marion Larrieu, Florian Rudelle, Marion Robertou Classification Dewey : 372.7-Livre scolaire : mathématiques
CHRISTOPHE / GORLIER / PERROT / RAGOT.
Reference : R320011568
(1991)
ISBN : 2010172981
HACHETTE ECOLES. 1991. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 171 pages illustrées de nombreux dessins et figures en couleur - Couverture illustrée en couleur.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
CHRISTOPHE / GORLIER / PERROT / RAGOT.
Reference : R320020609
(1991)
ISBN : 2010173015
HACHETTE ECOLE. 1991. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 160 pages illustrées de nombreux dessins et figures en couleurs + 350 pages / Nombreuses annotations sur la page de garde et de titre (livre du maitre).. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Christophe Hache, Véronique Donat, Hélène Gosset
Reference : RO20267876
(2006)
ISBN : 2091711462
NATHAN. 2006. In-4. Broché. Etat d'usage, Couv. convenable, Dos satisfaisant, Intérieur frais. 263 PAGES illustrées en couleur - annotations en page de titre. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Christophe Hache, Véronique Donat, Hélène Gosset, Julie Horoks, Nicolas Rambaud Classification Dewey : 372.7-Livre scolaire : mathématiques
1868 Gauthier-Villars, imprimeur libraire reliure demi cuir, titre et filets dorés sur le dos, 435p. Bon état, reliure solide, coiffes et tranches des plats frottés.
Tome 2 seul. 3e édition revue et corrigée par M.E. Prouhet. Table : suite du calcul intégral : différentiation et intégration sous le signe - déterminations des intégrales définies - intégration des différentielles totales et des équations différentielles - intégration de l'équation linéaire complète - résolutions des équations différentielles par les série - equations différentielles simultanées - intégrations des équations différentielles partielles - application géométriques des équations aux différentielles partielles - coubures des surfaces - calcul des différences finies. Calcul des variations : variation d'une intégrale définie.
Phone number : 04 76 97 79 28
BORDAS/MOUTON. 1968. In-12. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 284 pages.. . . . Classification Dewey : 510-Mathématiques
Collection etudes supérieures. Classification Dewey : 510-Mathématiques
Imprimerie des sciences matrhématiques et physiques. 1881. In-4. Broché. Etat d'usage, Couv. légèrement pliée, Dos abîmé, Papier jauni. 229 pages photocopiées - annotations à l'encre en marge de quelques pages ne génant pas la lecture, page 155 manquante, dos fendu, coins frottés.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
(No place), The Association for Symbolic Logic, 1940. Large 8vo. Bound in blue half cloth with silver lettering to spine. In ""Journal of Symbolic Logic"", Volume 5. Small paper label to lower part of spine and upper inner margin of front board. Stamp to title-page and last leaf, otherwise internally fine. Pp. 56-68. (Entire copy: IV, 188 pp.).
First printing of Church's seminal paper in which he introduced his Type Theory: A simpler and more general Type Theory than the one introduced by Bertrand Russell in 1908 and Whitehead & Russell in 1927.""Church's type theory is a formal logical language which includes first-order logic, but is more expressive in a practical sense. It is used, with some modifications and enhancements, in most modern applications of type theory. It is particularly well suited to the formalization of mathematics and other disciplines and to specifying and verifying hardware and software. A great wealth of technical knowledge can be expressed very naturally in it. With possible enhancements, Church's type theory constitutes an excellent formal language for representing the knowledge in automated information systems, sophisticated automated reasoning systems, systems for verifying the correctness of mathematical proofs, and certain projects involving logic and artificial intelligence."" (SEP) Order-nr.: 48379
(No place), The Association for Symbolic Logic, 1940 & 1941. Lev8vo. Bound in red half cloth with gilt lettering to spine. In ""Journal of Symbolic Logic"", Volume 5 & 6. Barcode label pasted on to back board. Small library stamp to lower part of 6 pages. A very fine copy. Pp. 56-68. [Entire copy: IV, 188, IV, 184 pp.).
First printing of Church's seminal paper in which he introduced his Type Theory: A simpler and more general Type Theory than the one introduced by Bertrand Russell in 1908 and Whitehead & Russell in 1927.""Church's type theory is a formal logical language which includes first-order logic, but is more expressive in a practical sense. It is used, with some modifications and enhancements, in most modern applications of type theory. It is particularly well suited to the formalization of mathematics and other disciplines and to specifying and verifying hardware and software. A great wealth of technical knowledge can be expressed very naturally in it. With possible enhancements, Church's type theory constitutes an excellent formal language for representing the knowledge in automated information systems, sophisticated automated reasoning systems, systems for verifying the correctness of mathematical proofs, and certain projects involving logic and artificial intelligence."" (SEP)
Princeton, Princeton University Press, 1944. 8vo. Original stiff wrappers. IV,118,(2) pp. A fine copy.
First edition. The forerunner to Church's classic text book 'Introduction to Mathematical Logic, 1956'.
[No place], The Journal of Symbolic Logic, 1967. 8vo. In the original printed wrappers. In ""Journal of Symbolic Logic"", Vol. 28, Number 4. December, 1963. Entire issue offered. A very fine and clean copy. Pp. 295 [Entire issue: Pp. 273-346, VI. ].
First printing of three short reviews by Alonzo Church.
[No place], The Association for Symbolic Logic, 1936 & 1937. Royal8vo. Bound in red half cloth with gilt lettering to spine. In ""Journal of Symbolic Logic"", Volume 1 & 2 bound together. Barcode label pasted on to back board. Small library stamp to lower part of 16 pages. A very fine copy. [Church:] Pp. 40-1" Pp. 101-2. [Post:] Pp. 103-5. [Turing:] Pp. 153-163" 164. [Entire volume: (4), 218, (2), IV, 188 pp.]
First edition of this collection of seminal papers within mathematical logic, all constituting some of the most important contributions mathematical logic and computional mathematics. A NOTE ON THE ENTSCHEIDUNGSPROBLEM (+) CORRECTION TO A NOTE ON THE ENTSCHEIDUNGSPROBLEM (+) REVIEW OF ""A. M. TURING. ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM"":First publication of Church's seminal paper in which he proved the solution to David Hilbert's ""Entscheidungsproblem"" from 1928, namely that it is impossible to decide algorithmically whether statements within arithmetic are true or false. In showing that there is no general algorithm for determining whether or not a given statement is true or false, he not only solved Hilbert's ""Entscheidungsproblem"" but also laid the foundation for modern computer logic. This conclusion is now known as Church's Theorem or the Church-Turing Theorem (not to be mistaken with the Church-Turing Thesis). The present paper anticipates Turing's famous ""On Computable Numbers"" by a few months. ""Church's paper, submitted on April 15, 1936, was the first to contain a demonstration that David Hilbert's 'Entscheidungsproblem' - i.e., the question as to whether there exists in mathematics a definite method of guaranteeing the truth or falsity of any mathematical statement - was unsolvable. Church did so by devising the 'lambda-calculus', [...] Church had earlier shown the existence of an unsolvable problem of elementary number theory, but his 1936 paper was the first to put his findings into the exact form of an answer to Hilbert's 'Entscheidungsproblem'. Church's paper bears on the question of what is computable, a problem addressed more directly by Alan Turing in his paper 'On computable numbers' published a few months later. The notion of an 'effective' or 'mechanical' computation in logic and mathematics became known as the Church-Turing thesis."" (Hook & Norman: Origins of Cyberspace, 250) Church coined in his review of Turing's paper the phrase 'Turing machine'.FINITE COMBINATORY PROCESSES-FORMULATION I: The Polish-American mathematician Emil Post made notable contributions to the theory of recursive functions. In the 1930s, independently of Turing, Post came up with the concept of a logic automaton similar to a Turing machine, which he described in the present paper (received on October 7, 1936). Post's paper was intended to fill a conceptual gap in Alonzo Church's paper on 'An unsolvable problem of elementary number theory'. Church had answered in the negative Hilbert's 'Entscheidungsproblem' but failed to provide the assertion that any such definitive method could be expressed as a formula in Church's lambda-calculus. Post proposed that a definite method would be one written in the form of instructions to mind-less worker operating on an infinite line of 'boxes' (equivalent to the Turing machines 'tape'). The range of instructions proposed by Post corresponds exactly to those performed by a Turing machine, and Church, who edited the Journal of Symbolic Logic, felt it necessary to insert an editorial note referring to Turing's ""shortly forthcoming"" paper on computable numbers, and asserting that ""the present article ... although bearing a later date, was written entirely independently of Turing's"". (Hook & Norman: Origins of Cyberspace, 356).COMPUTABILITY AND LAMBDA-DEFINABILITY (+) THE Ø-FUNCTION IN LAMBDA-K-CONVERSION: The volume also contains Turing's influential ""Computability and lambda-definability"" in which he proved that computable functions ""are identical with the lambda-definable functions of Church and the general recursive functions due to Herbrand and Gödel and developed by Kleene"". (Hook & Norman: Origins of Cyberspace, 395).
Wisconsin, The Association for Symbolic Logic, 1936. Lev8vo. Entire volume one of ""Journal of Symbolic Logic"" (i.e. number 1-4), March, June, September, December 1936) BOUND WITH ALL THE ORIGINAL WRAPPERS in a blue half cloth with gilt lettering to spine. Crossed-out library paper-label to lower part of spine and top left corner of front board. Two library stamps (in Chinese) to back of front free end-paper. Chinese library-stamp (red) and stamped inventory-number lower part of all four front wrappers. Minor bumping to lower corner of nr. 4, otherwise internally a very fine and clean copy of the entire volume. [Church:] Pp. 40-1"" 101-2. [Post:] Pp. 103-5. [Entire volume: 218 pp.].
First publication of Church's seminal paper in which he proved the solution to David Hilbert's ""Entscheidungsproblem"" from 1928, namely that it is impossible to decide algorithmically whether statements within arithmetic are true or false. In showing that there is no general algorithm for determining whether or not a given statement is true or false, he not only solved Hilbert's ""Entscheidungsproblem"" but also laid the foundation for modern computer logic. This conclusion is now known as Church's Theorem or the Church-Turing Theorem (not to be mistaken with the Church-Turing Thesis). The present paper anticipates Turing's famous ""On Computable Numbers"" by a few months. ""Church's paper, submitted on April 15, 1936, was the first to contain a demonstration that David Hilbert's 'Entscheidungsproblem' - i.e., the question as to whether there exists in mathematics a definite method of guaranteeing the truth or falsity of any mathematical statement - was unsolvable. Church did so by devising the 'lambda-calculus', [...] Church had earlier shown the existence of an unsolvable problem of elementary number theory, but his 1936 paper was the first to put his findings into the exact form of an answer to Hilbert's 'Entscheidungsproblem'. Church's paper bears on the question of what is computable, a problem addressed more directly by Alan Turing in his paper 'On computable numbers' published a few months later. The notion of an 'effective' or 'mechanical' computation in logic and mathematics became known as the Church-Turing thesis."" (Hook & Norman: Origins of Cyberspace, 250) The volume also contains first printing of Post's seminal paper, in which he, simultaneously with but independently of Turing, describes a logic automaton, which very much resembles the Turing machine. The Universal Turing Machine, which is presented for the first time in Turing's seminal paper in the Proceedings of the London Mathematical Society for 1936, is considered one of the most important innovations in the theory of computation and constitutes the most famous theoretical paper in the history of computing. ""Post [in the present paper] suggests a computation scheme by which a ""worker"" can solve all problems in symbolic logic by performing only machinelike ""primitive acts"". Remarkably, the instructions given to the ""worker"" in Post's paper and to a Universal Turing Machine were identical."" (A Computer Perspective, p. 125).""The Polish-American mathematician Emil Post made notable contributions to the theory of recursive functions. In the 1930s, independently of Turing, Post came up with the concept of a logic automaton similar to a Turing machine, which he described in the present paper [the paper offered]. Post's paper was intended to fill a conceptual gap in Alonzo Churchs' paper on ""An unsolvable problem of elementary number theory"" (Americ. Journ. of Math. 58, 1936). Church's paper had answered in the negative Hilbert's question as to whether a definite method existed for proving the truth or falsity of any mathematical statement (the Entscheidungsproblem), but failed to provide the assertion that any such definite method could be expressed as a formula in Church's lambda-calculus. Post proposed that a definite method would be written in the form of instructions to a mindless worker operating on an infinite line of ""boxes"" (equivalent to Turing's machine's ""tape""). The worker would be capable only of reading the instructions and performing the following tasks... This range of tasks corresponds exactly to those performed by a Turing machine, and Church, who edited the ""Journal of Symbolic Logic"", felt it necessary to insert an editorial note referring to Turing's ""shortly forthcoming"" paper on computable numbers, and ascertaining that ""the present article... although bearing a later date, was written entirely independently of Turing's"" (p. 103)."" (Origins of Cyberspace, pp. 111-12).Even though Post's work to some degree has been outshined by Turing's, the present paper is of seminal importance in the history of the foundation for modern computer logic and the ideological basis for the modern computer.The volume also contains the following important papers by W. V. Quine:1. Toward a Calculus of Concepts. Pp. 2-25.2. Set-theoretic Foundations for Logic. Pp. 45-57.Hook & Norman, Origins of Cyberspace, 2002: 250 + 356 Charles & Ray Eames, A Computer Perspective, 1973: 125.
DELAGRAVE. 1902. In-8. Broché. Etat d'usage, Couv. légèrement passée, Dos satisfaisant, Intérieur acceptable. 524 pages - tâches sur le dos - 1er plat légèrement rognés en en tête.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Masson et cie. 1903. In-12. Cartonné. Etat d'usage, Couv. convenable, Dos satisfaisant, Quelques rousseurs. 480 + 24 pages - nombreuses figures en noir et blanc dans le texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques