Cambridge, Macmillan and Co., 1850. 8vo. Bound in contemporary half calf with black and red title labels to spine with gilt lettering. In ""The Cambridge and Dublin Mathematical Journal"", Vol. V [5], (Being Vol. IX [9], of the Cambridge Mathematical Jorunal), 1850. Bookplate pasted on to pasted down front free end-paper and library code written in hand to lower part of spine. Library cards in the back. A fine and clean copy. Pp. 148-59. [Entire volume: IV, 288 pp.].
First printing of Cayley's important paper on curves of the fourth order. ""As an example of a remarkable property of cubic surfaces there was Cayley's discovery in 1849 [the present paper], of the existence of exactly 27 lines on every surface of the third degree. Not all need be real but there are surfaces for which they are all real."" (Kleine, P. 859).The volume contains many other important contributions by contemporary mathematicians.
(London, Taylor and Francis, 1862). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1862 - Vol. 152 - Part I. Pp. 639-662. Clean and fine.
First printing of an importent paper in analytical geometry.
(London, Taylor and Francis, 1869). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1868 - Vol. 158. Pp. 75-143 a. pp. 145-172. Clean and fine.
First printings on 2 influential memoirs on the analytical geometry of curves.
(London, Taylor and Francis, 1859). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1859 - Vol. 149 - Part I. Pp. 193-212. Clean and fine.
First printing of the paper in which Cayley gives a solution to the problem of double tangents.
(London, Taylor and Francis, 1865). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1865 - Vol. 155 - Part II. Pp. 545-578.
First printing of an importent paper. Cayley was the to determine the sextic curve.
London, Taylor & Francis, 1854. 8vo. Bound in contemporary half calf with gilt lettering and five raised bands in gilt to spine. In ""Philosophical Magazine"", Fourth Series, Vol. 7. 1854. Wear to extremities and stamp to title-page. Otherwise fine and clean. Pp. 40-47. (Entire volume: VII, (1), 536 pp. + 4 engraved plates.)
First edition The first abstract definition and treatment of the concept of a group. Lagrange and Galois had, among others, already used group theoretic methods for solving polynomial equations"" however, they considered only particular examples of groups, e.g., roots. It was Cayley, who first gave an abstract definition of groups as a collection of symbols equipped with an operation. In this paper he also proved that every group is isomorphic to a group of permutations, i.e. Cayley's Theorem, and he introduced the so called ""Cayley Tables"".
(London, Taylor and Francis, 1862). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1862 - Vol. 152 - Part I. Pp. 561-578.
First printing.
Berlin, Georg Reimer, 1846. 4to. In ""Journal für die reine und angewandte Mathematik, 32. Band, 2 Heft, 1846"". In the original printed wrappers, without backstrip. Front wrapper with a brown mark to top left corner, otherwise fine and clean. [Cayley:] Pp. 119-23. [Entire issue: Pp. 93-180, (2)].
First printing of Cayley's paper on Rotation matrix or skew-symmetric matrix (a square matrix A whose transpose is also its negative).""By 1846 Cayley had made use of four dimensions in the enunciation of specifically synthetic geometrical theorems, suggesting methods later developed by Veronese (C. M. P., I, no. 50 [1846], 317-328). Long afterward Cayley laid down in general terms, without symbolism, the elements of the subject of ""hyperspace"" (cf his use of the terms ""hyperelliptic theta functions,"" ""hyperdetermtnant,"" and so on) in his ""Memoir on Abstract Geometry"" (C. M. P., VI, no. 413 [1870], 456-469), showing that he was conscious of the metaphysical issues raised by his ideas in the minds of his followers but that as a mathematician he was no more their slave then than when remarking in his paper of 1846 (published in French): ""We may in effect argue as follows, without having recourse to any metaphysical idea as to the possibility of space of four dimensions (all this may be translated into purely analytic language)."""" (DSB)
(London, Richard Taylor and William Francis, 1854). 4to. No wrappers as extracted from ""Philosophical Transactions"" 1854, Vol. 144 - Part I. Pp. 245-258.
First printing of the first paper in Cayley's famous memoirs on 'quantics', a term he coined for algebraic forms. In this paper Cayley throughout remodelled the whole basis for Invariant Theory.""In addition to his part in founding the theory of abstract groups, Cayley has a number of important theorems to his credit: perhaps the best known is that every finite group whatsoever is isomorphic with a suitable group of permutations (see the first paper of 1854). This is often reckoned to be one of the three most important theorems of the subject, the others being the theorems of Lagrange and Sylow. But perhaps still more significant was his early appreciation of the way in which the theory of groups was capable of drawing together many different domains of mathematics: his own illustrations, for instance, were drawn from the theories of elliptic functions, matrices, quantics, quaternions, homographic transformations, and the theory of equations. If Cayley failed to pursue his abstract approach, this fact is perhaps best explained in terms of the enormous progress he was making in these subjects taken individually.""(DSB)
Berlin, G. Reimer, 1846. - Leipzig, B.G. Teubner, 1881. 4to and 8vo. Cayley's paper in ""Journal für die reine und angewandte Mathematik. Hrsg. von A.L. Crelle, Bd. 31: Drittes Heft.1846"". Pp. (179-)268,(2) and 1 plate. The whole issue (Drittes Heft) present with titlepage, stitched without wrappers. Cayley's paper pp. 213-226. - Veronese's paper in ""Mathematische Annalen. In Verbindung mit C. Neumann...hrsg. von Felix Klein und Adolph Meyer. XIX. Band. 2 Heft. 1881."" Pp. (161-)234. The whole issue (2. Heft) present with orig. printed wrappers. No backstrip. Veronese's paper pp. (161-)234.
Both papers first edition and first apperance in print of these two main papers in the history of projective geometry.""Cayley, in his paper ""Sur quelques théorèmes de la géométrie de position"", (the paper offered) first calls attention to the figures obtained by taking the section, by a plane or 3-dimensional space, of the complete n-point (viz., n points, and the (n/2) lines, (n/3) plans etc. dtermined by them) in a flat spaceof v dimensions. Later Veronese discusses more fully the nature of this class of configurations thus obtained in r dimensions (the second paper offered). Both Cayley and Veronese state that these same configurations can also be obtained as projections of higher-dimensional figures."" (Walter B. Carver). Veronese ""in particular may be considered the main founder of the projective geometry of hyperspaces with n dimensions, which had previously been linear algebra presented geometrically, rather than geometry.""(DSB). - An: Veronese-paper see Sommerville Bibliography of Non-Euclidean Geometry, 1881:3.This issue of ""Crelle's Journal"" contains one more paper of Cayley: ""Problème de géometrie analytique."", pp. 227-230.
Berlin, G. Reimer, 1862. 4to. As extracted from ""Journal für die reine und angewandte Mathematik, 60. Band, 1862""., without backstrip. Fine and clean. [Cayley:] Pp. 357-372.
First printing of Cayley's paper including many tables of tables of binary quadratic forms.
COLIN. AOUT 1966. In-8. Cartonnage d'éditeurs. Bon état, Couv. convenable, Dos satisfaisant, Intérieur acceptable. 226 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
LES EDITIONS DE LA NOUVELLE CRITIQUE. 1971. In-8. Broché. Etat d'usage, 2ème plat abîmé, Agraffes rouillées, Intérieur frais. 32 pages agrafées - 2ème plat tâché.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Delagrave.. 1898. In-12. Cartonnage d'éditeurs. Etat d'usage, Tâchée, Dos fané, Intérieur frais. 382+24 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Cours des écoles primaires élémentaires. 300 exercices. 4è édition. Classification Dewey : 372.7-Livre scolaire : mathématiques
Delagrave.. 1910. In-12. Cartonnage d'éditeurs. Etat d'usage, Couv. légèrement passée, Dos satisfaisant, Quelques rousseurs. 382 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
3000 exercices. Cours des écoles primaires élémentaires. Classification Dewey : 372.7-Livre scolaire : mathématiques
Delagrave.. 1901. In-12. Cartonnage d'éditeurs. Bon état, Couv. légèrement passée, Dos satisfaisant, Intérieur frais. 452 pages. . . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
1533 problèmes et 246 questions théoriques. 3è édition. Disponible édition 1904 (5è édition) à 19.80 euros. Classification Dewey : 372.7-Livre scolaire : mathématiques
DELAGRAVE.. Non daté.. In-12. Cartonné. Etat d'usage, Tâchée, Dos satisfaisant, Intérieur acceptable. 210 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
DELAGRAVE. NON DATE. In-12. Relié. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 210 pages- nombreuses figures en noir et blanc dans le texte. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
LIBRIAIRE DELAGRAVE. 1916. In-12. Relié. Etat d'usage, Tâchée, Mors fendus, Intérieur frais. 210 pages augmentees de nombreuses figures en noir et blanc dans le texte. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Delagrave.. 1912. In-12. Cartonnage d'éditeurs. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 210 pages. Annotations à l'encre violette sur la dernière page.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Cours des écoles primaires élémentaires. Classification Dewey : 372.7-Livre scolaire : mathématiques
Delagrave.. 1907. In-12. Cartonnage d'éditeurs. Etat d'usage, Couv. défraîchie, Dos fané, Intérieur frais. 359 pages. Ecritures violettes à l'intérieur du 1er plat de couverture.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Cours des écoles primaires élémentaires. 4è édition. Classification Dewey : 372.7-Livre scolaire : mathématiques
LIBRAIRIE DELAGRAVE. 1932. In-12. Relié. Etat d'usage, Couv. défraîchie, Dos satisfaisant, Intérieur frais. 207 pages augmentées de nombreux schémas mathématiques - coins émoussés - tampon sur le 1er contreplat de l'école des filles de Montpon. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
ROUDIL. 1971-72. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur acceptable. Niveau 1 : 140 pages. Niveau 2 : 193 pages. Nombeux schémas en noir et blanc dans le texte.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Niveau 1 : Elèves du premier cycle débutants adultes recyclage. Niveau 2 : Classes du second cycle baccalauréat, préparation aux études supérieures recyclage. Classification Dewey : 372.7-Livre scolaire : mathématiques
Armand Colin. 1973. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 160 pages.. . . . Classification Dewey : 510-Mathématiques
Collection du cours aux applications. Classification Dewey : 510-Mathématiques
NATHAN. 1999. In-8. En feuillets. Etat d'usage, Couv. convenable, Dos satisfaisant, Intérieur acceptable. Pochette de 52 fiches exercices + 8 fiches ressources + 1 fiche bilan + 2 fiches tableau des compétences. Quelques fiches complétées au stylo.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques