Bruxelles, Lamertin 1924 73pp., 29cm., dans la série "Académie royale de Belgique, classe des sciences, mémoires, collection in-4o, deuxième série" tome 5 fascicule 7, br.orig., non coupé, bon état
Paris Gauthier-Villars, Imprimeur-Libraire 1877 in 4 (29x23,5) 1 volume reliure cartonnée de l'éditeur, dos et plat supérieur titrés, 626 pages, petit cachet ex-libris bleu, reliure défraichie, manques de papier sur les coiffes (à restaurer). Comte Joseph Louis Lagrange, 1736-1813. Tome 7 seul: Cours donnés à l'Ecole Normale (sur 14). Bon exemplaire ( Photographies sur demande / We can send pictures of this book on simple request )
Bon Reliure
Paris Gauthier-Villars, Imprimeur-Libraire 1879 in 4 (29x23,5) 1 volume reliure cartonnée de l'éditeur, dos et plat supérieur titrés, 370 pages, petit cachet ex-libris bleu, reliure défraichie, usures sur les coiffes. Comte Joseph Louis Lagrange, 1736-1813. Tome 8 seul: Traité de la résolution des équations numériques de tous les degrés (sur 14). Bon exemplaire ( Photographies sur demande / We can send pictures of this book on simple request )
Bon Reliure
P., Courcier, 1808, un volume in 4 relié en plein veau, dos orné de caissons dorés, fers dorés sur les plats, toutes tranches dorées (reliure de l'époque), 3 feuillets non chiffrés, 323pp., 90pp.
---- TRES BEL EXEMPLAIRE de prix de concours général ---- Réédition de l'édition de 1806 dans un format nouveau et avec les fautes corrigées ---- Ces leçons parurent tout d'abord en 1801 dans le Journal de l'Ecole Polytechnique ---- "This work may be considered as the starting point for the researches of Cauchy, Jacobi and Weierstrass". (Rouse Ball) ---- "The "Leçons sur le calcul des fonctions, designed to be both a commentary on and a supplement to the Théorie des fonctions analytiques, appeared in 1801 in the Journal de l'Ecole polytechnique. A separate edition of 1806 contained two complementary lectures on the calculus of variations. In dealing with it and with all other subjects in these two works, Lagrange abandoned the differential notation and introduced a new vocabulary and a new symbolism...". (DSB VII p. 570)**8074/ARB4
P., Mallet-Bachelier, 1853-1855, 2 VOLUMES GRAND IN 4 reliés en demi-chagrin bleu marine, dos ornés de caissons et filets dorés (reliures de l'époque), (plats légèrement frottés), T.1 : (2), 14pp., 428pp., T.2 : (2), 4pp., 390pp., (1)
---- BON EXEMPLAIRE ---- Troisième édition REVUE, CORRIGEE ET ANNOTEE PAR Joseph BERTRAND : "Toutes mes notes ont pour but de développer le sens du texte lorsqu'il ne me semble pas assez clair ou de le rectifier dans des cas où l'incorrection n'est pas douteuse. Lorsque les progrès de la science ont exigé des développements plus considérables, les notes ont été renvoyées à la fin du volume. Les lecteurs me sauront gré d'y avoir placé, tout d'abord, deux dissertations remarquables publiées déjà dans le Journal de M. Liouville par M. Poinsot et M. Dirichlet qui critiquent l'un et l'autre, avec beaucoup de justesse, des passages importants de la première partie et indiquent en même temps de quelle manière il convient de les modifier". (Préface de J. BERTRAND) ---- "With the appearance of the Mecanique analytique, Lagrange proposed to reduce the theory of mechanics and the art of solving problems in that field to general formulas, the mere development of which would yield all the equations necessary for the solution of every problem. The traité united and presented from a single point of view the various principles of mechanics, demonstrated their connection and mutual dependence and made it possible to judge their validity and scope. It is divided in two parts, statics and dynamics, each of which treats solid bodies and fluids separately. The methods presented require only analytic operations, subordinated to a regular and uniform development. Each of the four sections begins with a historical account which is a model of the kind". (DSB VII pp. 569/570) ---- En Français dans le texte N° 179 1st ed**3021/N7AR-3025/ARB3-3026/N7AR
P., Gauthier-Villars, 1888-1889, 2 fort volumes grand in 4 reliés en demi-soie noire, dos ornés de filets dorés (reliures modernes), T.1 : 22pp., 502pp., T.2 : 8pp., 391pp.
---- BEL EXEMPLAIRE SUR GRAND PAPIER ET GRAND DE MARGES ---- Quatrième édition PUBLIEE PAR GASTON DARBOUX CONTENANT LES NOTES DE JOSEPH BETRAND ---- "With the appearance of the Mecanique analytique, Lagrange proposed to reduce the theory of mechanics and the art of solving problems in that field to general formulas, the mere development of which would yield all the equations necessary for the solution of every problem. The Traité united and presented from a single point of view the various principles of mechanics, demonstrated their connection and mutual dependence and made it possible to judge their validity and scope. It is divided in two parts, statics and dynamics, each of which treats solid bodies and fluids separately. The methods presented require only analytic operations, subordinated to a regular and uniform development. Each of the four sections begins with a historical account which is a model of the kind". (DSB VII pp. 569/570) ---- En Français dans le texte N° 179 1st ed**30170/3017/N1-3024/N7AR
P., Courcier, 1813, un volume in 4 relié en demi-basane, dos orné de filets dorés (reliure de l'époque), (quelques rousseurs), 12pp., 383pp.
---- BEL EXEMPLAIRE ---- Nouvelle édition (seconde édition) REVUE ET AUGMENTEE PAR L'AUTEUR ---- "Cette seconde édition a plusieurs avantages sur la première. Elle est plus correcte ; on a mis plus d'ordre dans les matières... Enfin on y a fait différentes additions dont les principales se trouvent dans le chapitre XIV de la seconde partie et dans le chapitre V de la troisième". (Avertissement) ---- "In this book, LAGRANGE intended to show that power series expansions are sufficient to provide differential calculus with a solid foundation. Today mathematicians are partially returning to this conception in treating the formal calculus of series. As early as 1812, however J.M.H. WRONSKI objected to LAGRANGE's claims. The subsequent opposition of Cauchy was more effective. Nevertheless, LAGRANGE's point of view could not be totally neglected. Completed by convergence considerations, it dominated the study of the functions of a complex variable throughout the nineteenth century". (DSB VII p. 570)**3150/3015/N1
P., Bachelier, 1847, un volume in 4 relié en demi-chagrin vert, dos orné de caissons dorés (reliure de l'époque), (quelques rousseurs), 12pp., 399pp.
---- BEL EXEMPLAIRE ---- Troisième édition REVUE ET SUIVIE D4UNE NOTE PAR M. J.A. SERRET ---- EX-LIBRIS MANUSCRIT SUR LE FAUX-TITRE E. DE BEAUVAIS ---- "In this book, LAGRANGE intended to show that power series expansions are sufficient to provide differential calculus with a solid foundation. Today mathematicians are partially returning to this conception in treating the formal calculus of series. As early as 1812, however J.M.H. WRONSKI objected to LAGRANGE's claims. The subsequent opposition of Cauchy was more effective. Nevertheless, LAGRANGE's point of view could not be totally neglected. Completed by convergence considerations, it dominated the study of the functions of a complex variable throughout the nineteenth century". (DSB VII p. 570)**84180/8418/N4-3020/N7AR
P., Courcier, 1808, un volume in 4 relié en pleine basane racinée, dos orné de fers et filets dorés, filets dorés sur les plats, armes sur le premier plat (reliure de l'époque), (coiffe restaurée, épidermure à un mors), 12pp., 311pp., 1pp. (errata)
---- Seconde édition, EN PARTIE ORIGINALE, REVUE ET AUGMENTEE PAR L'AUTEUR (DE PLUSIEURS NOTES) : "Les deux dernières notes paraissent pour la première fois dans cette nouvelle édition. Ces notes contiennent des recherches sur les principaux points de la théorie des équations algébriques". (Préface) ---- "La méthode de résolution des équations numériques de quelque degré qu'elles soient "que l'on trouve dans le Recueil des mémoires de l'Académie de Berlin pour l'année 1767, est la seule qui offre des moyens directs et sûrs de découvrir toutes les racines tant réelles qu'imaginaires d'une équation numérique donnée, et d'approcher le plus rapidement et aussi près que l'on veut de chacune de ces racines. On a réuni dans le présent traité le Mémoire qui contient cette méthode et les additions qui ont paru dans le volume des mémoires de la même Académie, pour l'année 1768. Et pour rendre ce traité plus intéressant, on y a joint plusieurs notes, dont les deux dernières paraissent pour la première fois dans cette nouvelle édition. Ces notes contiennent des recherches sur les principaux points de la théorie des équations algébriques". (Préface de LAGRANGE) ---- "LAGRANGE traced all known algebraic solutions of equations to the uniform principle consisting in the formation and solution of equations of lower degree whose roots are linear functions of the required roots and of the roots of unity. He showed that the quintic cannot be reduced in this way, its resolvent being of the sixth degree.". (Cajori p. 253) ---- DSB VII p. 566**30160/3016/N1-3018/N7AR-3014/ARB6
P., Bachelier, 1826, un volume in 4 relié en pleine basane racinée, dos orné de fers dorés, fers doré sur le premier plat, tranches jaspées (reliure de l'époque), (quelques rousseurs, petit accident à un mors), 28p., 314pp., (1 - errata)
---- Troisième édition (conforme à celle de 1808) et AUGMENTEE D'UNE ANALYSE DE L'OUVRAGE PAR M. POINSOT ---- Exemplaire de prix décerné par le Collège Royal de Montpellier ---- "La méthode de résolution des équations numériques de quelque degré qu'elles soient "que l'on trouve dans le Recueil des mémoires de l'Académie de Berlin pour l'année 1767, est la seule qui offre des moyens directs et sûrs de découvrir toutes les racines tant réelles qu'imaginaires d'une équation numérique donnée, et d'approcher le plus rapidement et aussi près que l'on veut de chacune de ces racines. On a réuni dans le présent traité le Mémoire qui contient cette méthode et les additions qui ont paru dans le volume des mémoires de la même Académie, pour l'année 1768. Et pour rendre ce traité plus intéressant, on y a joint plusieurs notes. Ces notes contiennent des recherches sur les principaux points de la théorie des équations algébriques". (Préface de J.L. LAGRANGE) ---- "LAGRANGE traced all known algebraic solutions of equations to the uniform principle consisting in the formation and solution of equations of lower degree whose roots are linear functions of the required roots and of the roots of unity. He showed that the quintic cannot be reduced in this way, its resolvent being of the sixth degree...". (Cajori p. 253) ---- DSB VII p. 566**30220/3022/N1-8281/ARB5-8280/ARB4
Paris, Bachelier, 1826. In-4, XXVIII-314-(2) pp., reliure de l'époque demi-basane, dos orné (dos frotté, épidermures, petit manque à la coiffe supérieure, pâles rousseurs). Ex-libris (imprimé et tampons humides) : Bibliothèque Populaire des Amis de l'Instruction du 5e Arrondissement de Paris.
* Voir photographie(s) / See picture(s). * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve.
(Berlin, Haude et Spener, 1770). 4to. No wrappers as issued in ""Mémoires de l'Academie Royale des Sciences et Belles-Lettres"", tome XXIV, pp. 251-326. Clean and fine.
First edition of an importent paper in algebraic analysis. The method used by Lagrange was probably suggested to him by Lambert, and both Euler, Lexell, d'Alembert and Condorcet all became highly intereste in this discovery as soon as they heard about it. ""Laplace later presented a better proof. Lagrange's formula occupied numerous other mathematicians, including Arbogast, Parceval, Servois, Hindenburg and Bürgman...."" and virtually every analyst of the nineteenth century considered the problem."" (Jean Itard in DSB). - Poggendorff I:1344.
(Berlin, Haude & Spener, 1770). 4to. No wrappers, as issued in ""Memoires de l'Academie Royale des Sciences et Belles-Lettres"", tome XXIV, pp. 181-250. Clean and fine.
First edition. An importent paper in the Theory of Numbers. The year before Lagrange gave a complete solution to the problem of giving all integral solutions of a special general equation (Sur la Solution des Problemes Indéterminés du Second Degré). In this paper he sets up a simpler proof of the same problem. - Cajori calls Lagrange ""One of the greatest mathematicians of all times"". - Poggendorff I:1344.
Paris, Gauthier-Villars, 1881. In-4, 427-23 pp., cartonnage original imprimé (cartonnage légèrement défraîchi mais solide).
Première édition collective, posthume et complète du tome IX des Oeuvres du mathématicien Joseph-Louis Lagrange, réunies par J.-A. Serret, tiré sur vergé. Il comporte le texte de La Théorie des fonctions analytiques. Complet du catalogue de l'éditeur. Voir photographie(s) / See picture(s) * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve.
Paris, Gauthier-Villars, 1877. In-4, 626 pp., broché, couverture originale imprimée (insolé, minuscules déchirures dans les marges).
Première édition collective, posthume et complète du tome VI des Oeuvres du mathématicien Joseph-Louis Lagrange, réunies par J.-A. Serret. Il comporte des pièces diverses non comprises dans les recueils académiques. Voir photographie(s) / See picture(s) * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve.
Paris, Gauthier-Villars, 1892. In-4, XII-346 pp., broché, couverture originale imprimée (insolation, 1er plat détaché, petits manques et déchirures au dos).
Première édition collective, posthume et complète du tome XIV des Oeuvres du mathématicien Joseph-Louis Lagrange, réunies par J.-A. Serret, tiré sur vergé. Il est composé des correspondances de Lagrange et Condorcet, ainsi que celles d'Euler et divers autres scientifiques. Il est illustré de 2 fac-similés d'une page de calcul et d'une lettre de Lagrange à Julia de Saint-Clair. Voir photographie(s) / See picture(s) * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve.
(Berlin, Haude et Spener, 1771). 4to. No wrappers, as issued in ""Mémoires des l'Academie Royale des Sciences et Belles-Lettres"", tome XXV, pp. 167-203 a. pp. 204-233 a. 1 folded engraved plate. With titlepage to ""Classe de Mathematique.""
First appearance of these two importent memoirs, dealing with ""elastic stress"" and the Two-Body problem. In the first paper ""On the Force of bent springs"" Lagrange became the first to investigate mathematically ""elastic stress"" - the physical principles of elasticity - a problem suggested by the design of the spiral spring of a watch.""Although Lagrange's contributions to the strenght of materials are of more theoretical than practical interest, his method of generalized coordinates and generalized forces later found applications in the strenghts of materials and proved a great value in solving problems of practical importence.""(Timoshenko ""History of Strength of Materials""p. 40).The second paper offered deals with the Two-Body problem and here he comes up with the solution later called the lagrangian solution. In 1770 Lagrange read before the Academy his famous paper ""Nouvelle méthode pour résoudre les équations littérales par le moyen des séries."", the discovery of the Lagrange-Series. In the paper offered - read to the Academy on November 1, 1770 - Lagrange applies his Series to ""Kepler's Problem"".Together with 2 other papers, Jean Bernoulli ""Sur les Suites ou Sequences dans la Laotterie de Genes"", pp. 234-253 and D'Alembert ""Extrait d'une Lettre ...à M. de La Grange"", pp. 254-264.
(Berlin, Haude et Spener, 1771). 4to. No wrappers, as issued in ""Mémoires des l'Academie Royale des Sciences et Belles-Lettres"", tome XXV, pp. 303-318. Fine and clean.
First edition of this importent paper in algebraic analysis, read before the Academy October 29, 1767 and published as a Memoir 1771. He employed Cramer's method of symmetric functions but made it more rapid by use of the series development of log (1+u).
Paris, De L'Imprimerie de la République, An V (1797). 4to. Uncut and partially unopened. Contemporary manuscript-binding. Provenance: With the exlibris of Stillman Drake - one of the most renown Galileo scholars. Some light brown spotting through out. Otherwise a very good copy. (4),VIII,276 pp.
First edition, first printing. Several bibliographies mention that there are two issues of the first edition, with no priority established - one with 277 numbered pages and another with 276 numbered pages which compromises Vol. III of the ninth cahier of the 'Journal de l'Ecole Polytechnique' (see Norman 1258 for example). However, the second mentioned printing was first published in 1801 (See Prof. Craig G. Fraser's article in ""Landmark Writings in Western Mathematics 1640-1940"", pp. 258-276).Lagrange is the great formulizer of his time. In his masterpiece 'Méchanique Analytique' from 1788 he freed Newtonian mechanics from synthetic and geometrical reasoning by reducing the theory of mechanics and the art of solving problems in that field to the mere solution of general formulas. In this work, the 'Théorie des fonctions analytiques', Lagrange attempted to give calculus an algebraic foundation and avoid the employment of infinitely small quantities. In this work Lagrange developed a systematic foundation of the calculus. Throughout the eighteenth century a critical attitude had developed both within mathematics and within general scientific culture. Bishop George Berkeley had already in 1734 in his work 'The Analyst' called attention to what he perceived as logical weaknesses in the reasonings of the calculus arising from the employment of infinitely small quantities. And by the end of the century a growing interest in the foundations of analysis was reflected in the decisions of the academies of Berluin and Saint Petersburg to devote prize competitions to the metaphysics of the calculus and the nature of the infinite. In Original contributions: Lagrange's conception of theorem-proving in analysis" his derivation of what is today called the Lagrange remainder in the Taylor expansion of a function his formulation of the multipiler rule in the calculus of variations and his account of sufficiency questions in the calculus of variations.Barchas 1198. Riccardi I (2), 3. Norman 1258. Honeyman 1881, Stanitz ,
(Berlin, C.F. Voss, 1774). 4to. Uncut with wide margins, without wrappers as issued in ""Nouveaux Memoires de L'Academie Royales des Sciences et Belles- Lettres"", Année MDCCLXXII, pp. 353-372.
First edition of a work which is a breakthrough in the theory of ""First Order Partial Differential Equations"", generalizing the method of variation of parameters for solving differential equations. "" The oldest theory of integration of partial differential equations of the first order are due to Lagrange"" it is based on the fundamental fact that the most general solution of such differential equations can be calculated with the help of differentiations and eliminations if a complete integral of the differential equationn is known"" - ""This problem (of partial differential equations) had only been lightly touched on by Clairaut, Euler, d'Alembert, and Condorcet. Lagrange wrote: ""Finally I have just read a memoir that Mr de Laplace presented recently.....This reading aweakened old ideas that I had on the same subject and resulted in the following investigations...(which constitute) a new and complete theory."" Laplace wrote on 3 February 1778 that he considered Lagrange's essay ""a masterpiece of analysis, by the importence of the subject, by the beauty of method, and by the elegant manner in which it is represented."" (DSB). - Parkinson, Breakthroughs 1774 M.
(Berlin, Ch. Fr. Voss, 1774). 4to. Large uncut copy, broadmargins, without wrappers as issued in ""Nouvaux Memoires d l'Academie Royale des Sciences et Belles-Lettres. Année 1772."" pp. 185-221 and pp. 222-258.
First edition of these two important papers. In the first paper ""Sur une Nouvelle Espece de Calcul..."" he made the most ambitious attempt to rebuild the foundation of the calculus. The paper is in fact an outline of his ""Theorie des functions"", issued later in 1797.""This work greatly impressed Lacroix, Condorcet and Laplace. Based on the analogy between powers of biniminals and differentials, it is one of the sources of the symbolic calculuses of the nineteenth century. A typical example of Lagrange's thinking as an analyst in this sentence taken form the memoir: ""Although the principle of the analogy (between powers and diffrentials) is nor self-evident, nevertheless, since the conclusions drawn from it are not thereby less exact, I shall make use of it to discover various theorems...""""(Jean Itard in DSB). The second paper ""Sur la Forme...""When D'Alembert red the paper he gave the following respons:""Your demonstration on imaginary roots seem to me to leave nothing to be desired, and I am very much obliged to you for the justice you have rendered to mine, which, in fact, has the minor fault (pwerhaps more apparant than real) of not being direct, bu which is quite simple and easy. D'Alembert was alluding to his Cause de vents (1747).""(DSB).
"LAGRANGE, (LA GRANGE), JOSEPH LOUIS. - A FUNDAMENTAL MEMOIR IN THE THEORY OF NUMBERS
Reference : 49805
(1769)
(Berlin, Haude et Spener, 1769). 4to. No wrappers as issued in ""Memoires de L'Academie Royale des Sciences et Belles Lettres"", tome XXIII, pp. 165-310. Clean and fine.
First edition of a fundamental paper in the Theory of Numbers in which Lagrange gives a solution in integers of indeterminate equations of the second degree - a remarkable turning point in Diophantine analysis. - Fermat had asserted that he could determine when the more general equation x2-Ay2=B was solvable in integers and that he could solve it when solvable, but Lagrange solved it in this paper and furthermore he gives the complete solution to the problem of giving all integral solutions of a general equation where the coefficients are integers. - Cajori calls Lagrange ""One of the greatest mathematicians of all times."" - Poggendorff I:1344.
"LAGRANGE, (LA GRANGE), JOSEPH LOUIS. - LAGRANGE'S CONTINUED FRACTIONS.
Reference : 45924
(1770)
(Berlin, Haude et Spener, 1770). 4to. Clean and fine without wrappers as issued in ""Mémoires de l'Academie Royale des Sciences et Belles-Lettres"", Tome XXIV, pp. 111-180. With titlepage to ""Classe de Mathematique"".
First appearance of Lagrange's importent paper in which he developed continous fraction solutions of equations.
(Berlin, Haude et Spener, 1767 and Berlin, Ch. Fr. Voss, 1774). 4to. Without wrappers as issued in ""Mémoires de l'Academie Royale des Sciences et Belles Lettres"" Tome XXI, pp. 364-380 and "" Nouveau Mémoires..."", pp. 97-122.
Both first edition in the journal form. Huygens proved Geometrically in 1659 that the tautochrone was a cycloid curve. This solution was later used to attack the problem of the Brachistochrone curve. Jacob Bernoulli solved the problem by using calculus in a paper from 1690, which for the first time used the term 'integral'. Both Lagrange and Euler loked for an analytical solution to the problem. Lagrange, in the papers offered here, developed a formal calculus based on the analogy between Newton's theorem and the successive differentiations of the product of two functions. He also communicated this to Eule in a letter written in Latin slightly before the Italian publication. In a letter to D'Alembert in 1769 Lagrange confirmed that this method of maxima and minima was the first fruit of his studies - he was only 19 when he divised it - and that he regarded it as his best work.A paper by Leonhard Euler:Éclaircissement plus détailles sur La generation et Propagation du Son et sur la Formation de L'Echo"" Berlin Academy Royale 1767"" in first edition withbound.
Gauthier-Villars. 1939. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur acceptable. 82 pages.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques