Belin. 1984. In-8. Broché. Etat d'usage, Couv. légèrement pliée, Dos satisfaisant, Intérieur frais. 384 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Classification Dewey : 372.7-Livre scolaire : mathématiques
Belin. 1986. In-4. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 224 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Collection Dia. Cours et exercices. Prépas HEC / ESCAE. Classification Dewey : 372.7-Livre scolaire : mathématiques
Dunod. 1968. In-8. Relié. Etat d'usage, Couv. convenable, Dos satisfaisant, Intérieur frais. VIII+437 pages - nombreuses figures en noir et blanc dans le texte - tampon sur la page de titre et sur la page de garde - une étiquette collée et tampon sur le 1er contre plat - jaquette abîmée, déchirée, pliée.. Avec Jaquette. . . Classification Dewey : 510-Mathématiques
Traduit par A.Gibert. Classification Dewey : 510-Mathématiques
Cambridge, University Press, 1910. Cont. hcloth. 88),62 pp. Name on halftitle (Erling Følner).
First edition. Hardy was the leading English pure mathematician at the time. This is his second work. (Cambridge Tracts in Mathematics and Mathematical Physics).
Cambridge, 1934. orig. full cloth. Top of spine frayed. XII,314 pp. Internally fine and clean.
First edition.
London a. N.Y., Macmillan and Co., 1893. Orig. full green cloth, gilt lettering to spine. IX,507 pp., textillustrations. A fine clean copy.
First edition og one of the most importent work in the Theory of Functions.
Leipzig, B. G. Teubner, 1876. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 10., 1876. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Very fine and clean. Pp.189-198. [Entire volume: IV, 592 pp.].
First printing of Harnack's Curve Theorem which formed the background for Hilbert's sixteenth problem. In real algebraic geometry, Harnack's curve theorem, named after Axel Harnack, describes the possible numbers ofconnected components that an algebraic curve can have, in terms of the degree of the curve.Hilbert's sixteenth problem was posed as the ""Problem of the topology of algebraic curves and surfaces"", he presented his problem as follows: ""The upper bound of closed and separate branches of an algebraic curve of degree n was decided by Harnack (the present paper)"" from this arises the further question as of the relative positions of the branches in the plane.As of the curves of degree 6, I have - admittedly in a rather elaborate way - convinced myself that the 11 branches, that they can have according to Harnack, never all can be separate, rather there must exist one branch, which have another branch running in its interior and nine branches running in its exterior, or opposite. It seems to me that a thorough investigation of the relative positions of the upper bound for separate branches is of great interest, and similarly the corresponding investigation of the number, shape and position of the sheets of an algebraic surface in space - it is not yet even known, how many sheets a surface of degree 4 in three-dimensional space can maximally have."" (Rohn, Flächen vierter Ordnung, Preissschriften der Fürstlich Jablonowskischen Gesellschaft, Leipzig 1886).Hilbert had investigated the M-curves of degree 6, and found that the 11 components always were grouped in a certain way. His challenge to the mathematical community now was to completely investigate the possible configurations of the components of the M-curves.Furthermore he requested a generalization of Harnack's Theorem to algebraic surfaces and a similar investigation of surfaces with the maximum number of components.The problem is still unsolved today.
London, Macmillan & Co., 1946. 8vo. Without wrappers. Extracted from ""Nature. No. 4015, Saturday, October 12, 1946, Vol. 158"". A fine and clean copy. [Hartree:] Pp. 500-6. [Entire offered issue: Pp. 495-528].
First printing of this ""first paper on an electronic digital computer published in a large-circulation international scientific journal."" (OOC).The ENIAC was the first general-purpose electronic computer. It was a Turing-complete [computationally universal] digital computer capable of being reprogrammed to solve a full range of computing problems.""Hartree, a British mathematician, first learned of ENIAC [Electronic Numerical Integrator And Computer] in 1945, when he saw the as-yet uncompleted machine during a visit to the Moore School. In 1946 he returned to the Moore School as a participant in the Moore School lectures, advising on nonmilitary uses of ENIAC"" during this time he became the first Englishman to work with the machine. He was the first to bring news of ENIAC to Great Britain, publishing the above article in Nature shourtly after his return from the United States. Although he himself invented no new calculating devices, Hartree's promotion of electronic digital calculating methods in scientific computation helped to stimulate the development of more powerful computers like Cambridge University's EDSAC."" (OOC).The ENIAC was compared to today's standard rather large: It was 100 feet long, 10 feet high, and 3 deep and contained 18,000 vacuum tubes, about 70,000 resistors, 10,000 capacitors, and 6,000 switches. It consumed 140 kilowatts of power, so much power that, when operated, the lights in a nearby town dimmed.See: Hook & Norman. Origins of Cyberspace 648.
Berlin, De Gruyter, 1933/1937, 2 volumes petit in 8 reliés en pleine toile éditeur, vol. I : 152pp., vol. II : 158pp.
---- EDITION ORIGINALE**2595/L7AR
P., Hermann, 1934,un volume in 8, broché, 16pp.
---- EDITION ORIGINALE**2594/o7ar
HATIER 2018 36 pages 23x23 4x2 8cm. 2018. Broché. 36 pages.
Très bon état
Paris, Mallet-Bachelier 1860, 215x145mm, XIV - 360pages, reliure demi-basane. Plats papier marbré, dos à faux-nerfs. Très bel exemplaire.
Pour un paiement via PayPal, veuillez nous en faire la demande et nous vous enverrons une facture PayPal
---- SIX MEMOIRES ORIGINAUX DE HATON DE LA GOUPILLIERE reliés en un volume in 8 ---- BEL EXEMPLAIRE ---- Haton De La Goupillière, ingénieur en chef des Mines, dirigea l'Ecole des mines de Paris. Il fut président de la société d'encouragement pour l'industrie nationale et de la société mathématique de France et vice-président du conseil général des mines**N3/2597
Coimbra, Imprensa da universidade, 1908, un volume in 8 relié en demi-soie bleue marine, étiquette de titre rouge, dos orné d'un fleuron doré (reliure postérieure), (cachet de bibliothèque dans la marge de la page de titre), 6pp., 177pp.
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE ---- Haton De La Goupillière, ingénieur en chef des Mines, dirigea l'Ecole des mines de Paris. Il fut président de la société d'encouragement pour l'industrie nationale et de la société mathématique de France et vice-président du conseil général des mines**9003/N2
[Mallet-Bachelier] - HATON DE LA GOUPILLIERE, J.-N. ; [ HATON DE LA GOUPILLIERE, Julien ]
Reference : 69177
(1860)
1 vol. in-8 reliure de l'époque demi-chagrin brun, dos à 5 nerfs dorés, Mallet-Bachelier, Paris, 1860, XIV-360 pp.
Alors qu'il existait déjà plusieurs traités très complet de calcul différentiel et intégral, il apparut à l'auteur la nécessité d'élaborer un ouvrage destiné aux "personnes, aujourd'hui si nombreuses, que leur carrière appelle à s'occuper de Mathématiques, sans que la science pure devienne toutefois leur destination excluvise". Il a mûri l'ouvrage lors de la préparation du Cours d'Analyse dont il était chargé à l'Ecole Impériale des Mines. Julien Haton de La Goupillière (1833-1927) sera directeur de l'École des mines de Paris de 1887 à 1900, président de la Société mathématique de France en 1890 et doyen de l'Académie des Sciences. Bon état (dos un peu frotté, qq. rouss.)
Hannover, Schmorl & von Seefeld 1872 xii + 60pp., 22cm., original softcover (spine bi repaired), text and interior are clean and bright, good condition, W107934
Paris, Ellipses 1988, 260x175mm, 175pages, broché. Bon état.
Pour un paiement via PayPal, veuillez nous en faire la demande et nous vous enverrons une facture PayPal
ELLIPSES. 2003. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 223 pages.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Hauchecorne Bertrand, Suratteau Daniel
Reference : R200133997
(1996)
ISBN : 2729846832
Ellipses. 1996. In-8. Broché. Etat d'usage, Coins frottés, Dos plié, Papier jauni. 381 pages, nombreuses figures, photos et illustrations en noir et blanc dans et hors texte - annotation à l'encre sur la page de titre.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Hauchecorne Bertrand & Suratteau Daniel
Reference : R100073457
(2008)
ISBN : 2729841644
Ellipses. 2008. In-8. Broché. Bon état, Couv. convenable, Dos plié, Intérieur frais. VI+551 pages - couverture contrepliée - nombreuses illustrations et figures en noir et blanc dans et hors texte.. . . . Classification Dewey : 510-Mathématiques
Classification Dewey : 510-Mathématiques
Hauniae [Copenhagen], 1831. 8vo. In the original printed boards. A few occassional brown spots, otherwise a fine copy. (6), 135, (1) pp + 3 folded plates.
First printing of Haugsted's early work on the thymus.
Leipzig, B. G. Teubner, 1908. 8vo. Original printed wrappers, no backstrip. In ""Mathematische Annalen. Begründet 1908 durch Alfred Clebsch und Carl Neumann. 65. Band. 4. Heft."" Entire issue offered. Wrappers with a few nicks, internally fine and clean. [Hausdorff:] Pp. 435-505. [Entire issue: Pp. 433-575].
First printing of Hausdorff important paper in which a generalization of Cantor's Continuum Hypothesis was presented for the first time. This is equivalent to what is now called the Generalized Continuum Hypothesis.The continuum hypothesis is a hypothesis, put forth by Georg Cantor in 1877, about the possible sizes of infinite sets. It states: ""There is no set whose cardinality is strictly between that of the integers and that of the real numbers.""Felix Hausdorff is considered to be one of the founders of modern topology and he contributed significantly to set theory, descriptive set theory, measure theory, function theory, and functional analysis.