9 books for « p a m dirac »Edit

Sort by

‎"DIRAC, PAUL.‎

Reference : 53720

(1928)

‎The Quantum Theory of the Electron - [FIRST ANNOUNCEMENT OF THE DIRAC EQUATION]‎

‎London, Harrison and Sons, 1928. Royal8vo. In the original printed wrappers. In ""Proceedings of the Royal Society of London, Series A, Vol. 117, No. 778"". Black cloth backstrip pasted on to spine, otherwise a fine copy (without institutional stamps). [Dirac's paper:]Pp 610-624. [Entire issue:] Pp. 541-730, (2), XXXVI, X + 6 plates.‎


‎First printing of Dirac's landmark paper in which he unified quantum mechanics and relativity and implied the existence of antimatter now known as the Dirac Equation"" one of the great triumphs of theoretical physics which brought him on a par with the works of Newton, Maxwell, and Einstein before him. In 1933 he was awarded the Nobel Price in Physics ""for the discovery of new productive forms of atomic theory"", a direct consequence of the present paper. ""[The Dirac Equations] ranks among the highest achievements of twentieth-century science"" (Pais, Inward Bound, p. 290).""In the Dirac equation not only quantum mechanics and the special theory of relativity were married, but also the spin of the electron is contained in it without any ad hoc assumption. But the equation not just beautifully described known phenomena, it did more. It predicted the existence of electrons with negative energy. This was at first held to be a severe problem of the theory but was finally understood as great progress, because negative-energy electrons could be interpreted as hitherto unknown particles. Thus, the existence of new particles was predicted which had all properties of the electron except for the electric charge. These particles were indeed found four years after the equation. Dirac is often quoted to have said that his equation 'contains most of physics and all of chemistry'."" (Brandt, The Harvest of a Century).""Even with the many successful applications of quantum mechanics to spectroscopy and other areas of physics, the theory was not without problems. There was, for example, the question of the relationship between relativity and quantum mechanics. If quantum mechanics was really a fundamental theory of the microcosmos, it ought to be consistent with the fundamental theory of macroscopic bodies, the (special) theory of relativity. Yet it was obvious from the very beginning that this was not the case. It was not too difficult to construct a relativistic quantum wave equation, such as Schrödinger had already done privately and as Oskar Klein, Walter Gordon, and several other physicists did in 1926-27. Unfortunately, this equation, known as the Klein-Gordon equation, did not result in the correct fine structure of hydrogen and it proved impossible to combine it with the spin theory that Pauli had proposed in 1927. The solution appeared in January 1928, when Dirac published his classical paper on 'The Quantum Theory of the Electron', which included a relativistic wave equation that automatically incorporated the correct spin. Dirac's equation was of the same general form as Schrödinger's equation [...] and included matrices with four rows and four columns"" correspondingly the Dirac wave function had four components. Most remarkably, without introducing the spinning electron in advance, the equation contained the correct spin. In a certain, unhistorical sense, had spin not been discovered empirically, it would have turned up deductively from Dirac's theory. The new theory was quickly accepted when it turned out that the Dirac eigenvalue equation for a hydrogen atom resulted in exactly the same energy equation that Sommerfeld had derived in 1916. Dirac's relativistic wave equation marked the end of the pioneering and heroic phase of quantum mechanics, and also marked the beginning of a new phase"" (Kragh, Quantum Generations, p. 167)‎

Logo ILAB

Phone number : +45 33 155 335

DKK22,500.00 (€3,017.74 )

‎"DIRAC, P.A.M. (PAUL ADRIEN MAURICE). - THE RADIATION THEORY, THE BIRTH OF QUANTUM ELECTRODYNAMICS‎

Reference : 47023

(1927)

‎The Quantum Theory of Emission and Absorption of Radiation. (+) The Quantum Theory of Dispersion. (2 Papers).‎

‎London, Harrison And Sons, Ltd., 1927. Royal8vo. Contemp. full cloth. A small stamp on verso of titlepage. In: ""Proceedings of the Royal Society of London"", Series A, Vol. 114. VI,IX,748 pp. (entire volume offered). Dirac's papers: pp. 243-265 a. pp. 710-728. Clean and fine.‎


‎First appearance of these milestone papers in Quantum Physics, constituting the first step in Quantum Field Theory and the invention of the Second Quantifization Method. By these papers Dirac ""gave the foundation for that theory, quantum electrodynamics""(Pais).""A New Radiation Theory. Dirac liked his transformation theory because it was the outcome of a planned line of research and not a fortuitous discovery. He forced his future investigations to fit it. The first results of this strategy were almost miraculous. First came his new radiation theory, in February 1927, which quantized for the first time James Clerk Maxwell’s radiation in interaction with atoms. Previous quantum-mechanical studies of radiation problems, except for Jordan’s unpopular attempt, retained purely classical fields. In late 1925 Jordan had applied Heisenberg’s rules of quantization to continuous free fields and obtained a light-quantum structure with the expected statistics (Bose Einstein) and dual fluctuation properties. Dirac further demonstrated that spontaneous emission and its characteristics—previously taken into account only by special postulates—followed from the interaction between atoms and the quantum field. Essential to this success was the fact that Dirac’s transformation theory eliminated from the interpretation of the quantum formalism every reference to classical emitted radiation, contrary to Heisenberg’s original point of view and also to Schrödinger’s concept of ? as a classical source of field.This work was done during Dirac’s visit to Copenhagen in the winter of 1927. Presumably to please Bohr, who insisted on wave-particle duality and equality, Dirac opposed the ""corpuscular point of view"" to the quantized electromagnetic ""wave point of view."" He started with a set of massless Bose particles described by symmetric ? waves in configuration space. As he discovered by’ playing with the equations, ’ this description was equivalent to a quantized Schrödinger equation in the space of one particle"" this’ second quantization’ was already known to Jordan, who during 1927 extended it into the basic modern quantum field representation of matter. Dirac limited his use of second quantization electromagnetic to radiation: to establish that the corpuscular point of view, once brought into this form, was equivalent to the wave point of view.""(DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK8,500.00 (€1,140.04 )

‎"DIRAC, P.A.M. - THE ALGEBRA OF QUANTUM MECHANICS.‎

Reference : 46991

(1926)

‎The Elimination of the Nodes in Quantum Mechanics. (+) Relativity Quantum Mechanics with an Application to Compton Scattering. (2 papers).‎

‎London, Roayl Society, 1926. Royal 8vo. Full cloth. Gilt lettering to spine. In: ""Proceedings of the Royal Society"". Series A, Vol. 111. V,753,LIII pp., textillustr. and plates. (Entire volume offered).‎


‎First appearance of these papers constituting Dirac's own theory of quantum mechanics.""Dirac wanted to establish an algebra for quantum variables, or, as he now termed them, q-numbers... He wanted his q-number algebra to be a general and purely mathematical theory that could then be applied to problem of physics. Although it soon turned out that q-number algebra was equivalent to matrix mechanics, in 1926 Dirac's theory was developed as an original alternative to both wave mechanics and matric mechanics. It was very much Dirac's own theory, and he stuck to it without paying much attention to what went on inmatrix mechanics... In the summer of 1926, Dirac published a new and very general version of q-number algebra, this timepresented as a purely mathematical theory. In this paper (offered here) he did not refer to physics at all... The work had little impact on the physics community but seems to have been appreciated by those who cultivated the mathematical aspects of quantum physics. Most of the results obtained by Dirac in his paper ""The Elimination of the Nodes in Quantum Mechanics"" had been found earlier by the German theorists using a method of matric mechanics, but Dirac was able to improve on some of the results and deduce them from his own system of quantum mechanics.""(Helge Kragh).‎

Logo ILAB

Phone number : +45 33 155 335

DKK3,500.00 (€469.43 )

‎"DIRAC, P. A. M.‎

Reference : 46940

(1931)

‎Quantized Singularities in the Electromagnetic Field. - [PREDICTION OF ANTI-MATTER]‎

‎London, Harrison and Sons, 1931. Royal8vo. Bound in contemporary full blue cloth with gilt lettering to spine. In ""Proceedings of the Royal Society"", Series A, Vol. 132 & 133, 1933. A very fine and clean copy. [Dirac in Vol 133:] Pp. 61-72. [Entire volume: V(1), 703-706, 701, (1), XIV, 695, IX pp.]‎


‎First printing of Dirac's seminal paper in which he predict anti-matter. ""The prediction and subsequent discovery of the positron rank among the great triumphs of modern physics"". (Pais, The Genius of Science). After Dirac in 1928 had published his famous relativistic wave equation for the electron, he spent the following years working on an interpretation of the negative energy solutions of the equation. In 1930 he published his hole-theory and tried to identify the holes with protons. But, as pointed out by several others, the theory required that these counter particles to the electron must have the same mass as the electron, and also would annihilate into pure energy upon colliding with the electron. In 1931 (in this article) Dirac bit the bullet and postulated: ""A hole, if there is one, would be a new kind of particle, unknown to experimental physics ... We may call such a particle an anti-electron ... Theory at present is quite unable to suggest a reason why there should be any differences between electron and protons"". Thus, Dirac had predicted the existance of both the positron and antiproton. ""Dirac was one of the greatest theoretical physicists in the twentieth century. He is best known for his important and elegant contributions to the formulation of quantum mechanics" for his quantum theory of the emission and absorption of radiation, which inaugurated quantum electrodynamics for his relativistic equation of the electron" for his ""prediction"" of the positron and of antimatter"" and for his ""large number hypothesis"" in cosmology. Not only his results but also his methods influenced the way much of theoretical physics is done today, extending or improving the mathematical formalism before looking for its systematic interpretation."" (DSB).In 1932 C. D. Anderson produced positrons in cloud chambers exposed to radiation. Antiprotons were observed in 1954 by E. G. Segrè and O. Chanberlain.‎

Logo ILAB

Phone number : +45 33 155 335

DKK9,500.00 (€1,274.16 )

‎DIRAC, Paul Adrien Maurice‎

Reference : 77259

(1931)

‎Les principes de la mécanique quantique‎

‎Paris, Les presses universitaires de France, 1931, , VIII-314 pp, demi-toile grise de l'éditeur, plats cartonnés imprimés en noir, Traduit par AL. Proca et J. Ullmo. Première édition française du fameux ouvrage de Paul Adrien Maurice Dirac (1902-1984), The Principles of Quantum Mechanics paru en 1930. Dans cet ouvrage, Dirac, qui est l'un des pères de la mécanique quantique, utilise l'algèbre des opérateurs linéaires comme une généralisation des théories d'Heisenberg et de Schrödinger. Cet ouvrage fait partie de la collection "Recueil des conférences-rapports de documentation sur la physique" (Vol.21). Il partage le prix Nobel de physique en 1933 avec Erwin Schrödinger pour « la découverte de formes nouvelles et productives de la théorie atomique » Couverture rigide‎


‎Bon VIII-314 pp.‎

Logo SLAM Logo ILAB

Phone number : 331 42 60 21 98

EUR600.00 (€600.00 )

‎"DIRAC, PAUL.‎

Reference : 43505

(1959)

‎Energy of the Gravitational Field.‎

‎(New York), American physical Society, 1959. Lex8vo. Volume 2, No. 8, April 15, 1959 of ""Physical Review Letters"", entire volume offered. In the original printed blue wrappers. Previous owner's name to top right corner of front wrapper written with a soft pencil. A very nice and clean copy externally as well as internally. Pp. 368-71. [Entire issue: Pp. 329-381].‎


‎First printing of Dirac's paper, a later publication of his speech to the New York Meeting of the American Physical Society in early 1959 in which he applies the Hamiltonian form of gravitational theory to Einstein's general relativity. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. He shared the Nobel Prize in physics in 1933 with Erwin Schrödinger, ""for the discovery of new productive forms of atomic theory.""‎

Logo ILAB

Phone number : +45 33 155 335

DKK950.00 (€127.42 )

‎DIRAC (P.M.A.)‎

Reference : 1790

‎Quelques problèmes de mécanique quantique. La base de la mécanique statistique quantique. Mécanique quantique des systèmes à plusieurs élections. Une théorie des élections et des protons ; pp. 357/400. In Annales de l'Institut Henri Poincaré, volume 1 fascicule IV - Conférence faite à l'Institut Henri Poincaré le 13, 14, 19 et 20 Décembre 1929 -- EDITION ORIGINALE‎

‎P., PUF, 1931, un volume in 8, broché‎


‎---- EDITION ORIGINALE ---- "P.A.M. Dirac, british physicist, worked out a version of quantum mechanics consistent with special relativity. The existence of antiparticles, such as the positron, was one of its predictions. He shared the Nobel Prize for Physics in 1933 with Austrian physicist Erwin Schrödinger". (Hutchinson) ---- RELIE AVEC : BLOCH (L.). Introduction à l'étude des spectres de bandes et de la constitution des molécules ; pp. 309/356 - CARLEMAN (T.). La théorie des équations intégrales singulières et ses applications. Exemples d'équations intégrales singulières. Théorie des équations intégrales à noyau hermitique. Applications ; pp. 401/423**1790/L5AR‎

Phone number : 01 43 25 51 73

EUR39.00 (€39.00 )

‎DIRAC Paul Adrien Maurice‎

Reference : 582995

‎Les Principes de la Mécanique Quantique.‎

‎Editions Jacques Gabay Paris 1990 In-8 ( 240 X 160 mm ) de VIII-314 pages, broché sous couverture imprimée. Très bel exemplaire.‎


Phone number : 04 91 42 63 17

EUR120.00 (€120.00 )

‎P.-A.-M. Dirac‎

Reference : R160220595

(1931)

‎Les principes de la mécanique quantique - Recueil de conférences-rapports de documentation sur la physique n° XXI.‎

‎Presses universitaires de France. 1931. In-8. Broché. Etat d'usage, 1er plat abîmé, Dos abîmé, Intérieur acceptable. 314 pages - petite déchirure sur le 1er plat.. . . . Classification Dewey : 530-Physique‎


‎Traduit par Al.Proca et J.Ullmo - Sommaire : I.Le principe de superposition - II. Algèbre symbolique des états et des observables. III - Etats propres et valeurs propres. IV - Représentation des états et des observables. V - La théorie des transformations. VI - Equations du mouvement et conditions de quanta. VII - Applications élémentaires. VIII - Mouvement dans un champ de forces central. IX - Théorie des perturbations. X - Problèmes de collision. XI - Des systèmes qui contiennent plusieurs particules semblables. XII - Théorie du rayonnement. XIII - Théorie relativiste de l'électron. Classification Dewey : 530-Physique‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR379.00 (€379.00 )
Get it on Google Play Get it on AppStore
Search - p a m dirac
The item was added to your cart
You have just added :

-

There are/is 0 item(s) in your cart.
Total : €0.00
(without shipping fees)
What can I do with a user account ?

What can I do with a user account ?

  • All your searches are memorised in your history which allows you to find and redo anterior searches.
  • You may manage a list of your favourite, regular searches.
  • Your preferences (language, search parameters, etc.) are memorised.
  • You may send your search results on your e-mail address without having to fill in each time you need it.
  • Get in touch with booksellers, order books and see previous orders.
  • Publish Events related to books.

And much more that you will discover browsing Livre Rare Book !