Berlin, Stockholm, Paris, F. & G. Beijer, 1906. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 30, 1906. Entire volume offered. Stamp to title page, otherwise a fine and clean copy. Pp. 355-400. [Entire volume: 6, 410 pp].
First appearance of Fatou's seminal Ph.D. thesis in which he presented his famous Fatou theorem, which state that a bounded analytic function in the unit disc has radial limits almost everywhere on the unit circle. This theorem was at the origin of a large body of research in 20th-century mathematics under the name of bounded analytic functions. Fatou set is the 'regular' appearance of the chaotic Julia set and both if these initiated what was to be known as ""complex dynamics"" which eventually resulted in the Mandelbrot set.Fatou's thesis also include the first application of the Lebesgue integral to concrete problems of analysis, mainly to the study of analytic and harmonic functions in the unit disc. He furthermore studied for the first time the Poisson integral of an arbitrary measure on the unit circle and also made a major contribution to finding a solution to the related question of whether conformal mapping of Jordan regions onto the open disc can be extended continuously to the boundary.""He contributed important results on the Taylor series, the theory of the Lebesgue integral, and the iteration of rational functions of a complex variable. When studying the circle of convergence of the Taylor series, several points of view are possible: (1) one can look for criteria of convergence or divergence of the series itself on the circumference" (2) one can consider the limit values of the circle of the analytic function represented by the series and try to determine where these limit values are finite or infinite, as well as the properties of the functions of the argument represented by the real and imaginary parts of the series when these functions are well defined" (3) one can consider what points on the circumference, singular in the Weierstrass sense, also determine the analytic extension of the series. The link between these problems led Fatou to formulate a fundamental theorem in the theory of the Lebesgue integral."" (DSB).
[Librairie Schwarz] - Collectif ; FOUQUERAY, Charles ; Jean Ratyé; Henri Salaun ; Charles Henri Dumesnil ; Jules Docteur; Marie Lacaze; Joseph Frochot ; Maurice Grasset; Louis Fatou; Georges Varney; Paul Jehenne; Pierre Ronarc'h;
Reference : 69747
(1920)
3 fort et grand vol. in-4 reliure éditeur demi-chagrin vert, Librairie Schwarz, Paris, s.d. (circa 1920), 416 pp. (pagination suivie) avec très nombreuses planches en hors texte (souvent par Charles Fouqueray), texte et légende des planches et table générale des matières en sus. Rappel des Titres : Tome I : Les prodromes de la guerre. L'aventure du "Goeben" et du "Breslau" (du 2 août au 10 août 1914). Les opérations maritimes dans l'Océan, la Mer du Nord et les océans lointains ; Tome II : La Stratégie navale britannique. Le plan de guerre britannique (Amiral Ratyé) - Les Opérations en Méditerranée sous le Commandement du Vice-Amiral Boué de Lapeyrère 12 août 1914 - 14 octobre 1915 (Amiral Salaun) - L'expédition des Dardanelles (août 1914 - Janvier 1916) (Amiral Dumesnil) ; Tome III : La guerre sur les théatres d'opérations extérieurs (Amiral Docteur) - Intervention de l'Italie (Amiral Lacaze) - La Guerre Navale dans l'Adriatique (Amiral Frochot) - La Bataille du Jutland (Amiral Grasset) - Les Opérations en Méditerranée sous le commandement de l'Amiral Dartige du Fournet (octobre 1915 - décembre 1916) (Amiral Fatou) - Les Opérations en Méditerranée sous le commandement de l'Amiral Gauchet (Décembre 1916 - Novembre 1918) (Amiral Varney) - Les canonniers marins sur le front des armées (Amiral Jehenne) - Les fusiliers marins au Front des Flandres (Amiral Ronarc'h)
Etat très satisfaisant (qq. petits frott. et petites traces d'usage) pour les 3 premiers tomes de cette belle publication, richement illustrée.